Skip to main content

Transport Properties of Non-Equilibrium Plasmas

  • Living reference work entry
  • First Online:
Handbook of Thermal Plasmas

Abstract

Simulation of thermal plasma processes requires transport coefficients such as electrical and thermal conductivities, viscosity, and diffusion coefficients. As already shown in chapter “Transport Properties Under Plasma Conditions,” calculation of such coefficients, even under equilibrium conditions (both LTE and LCE), is rather involved. In this chapter, derivations of such coefficients under non-equilibrium conditions will be described, considering:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ES:

Excited states

GS:

Ground state

LCE:

Local chemical equilibrium

LTE:

Local thermodynamic equilibrium

NLCE:

Non-local chemical equilibrium

NLTE:

Non-local thermodynamic equilibrium

RTC:

Reactive thermal conductivity

2T:

Two-temperature plasma (Non-LTE)

References

  • Al-Mamun SA, Tanaka Y, Uesugi Y (2010) Two-temperature two-dimensional non chemical equilibrium modeling of Ar–CO2–H2 induction thermal plasmas at atmospheric pressure. Plasma Chem Plasma Process 30:141–172

    Article  Google Scholar 

  • Aubreton J, Bonnefoi C, Mexmain J.M. (1986) Calculation of thermodynamic and transport properties in Ar-O2 plasma in non-local thermodynamic equilibrium at atmospheric pressure (in French). Rev Phys Appl 21(6):365–376

    Article  Google Scholar 

  • Aubreton J, Elchinger MF, Fauchais P, Rat V, André P (2004a) Thermodynamic and transport properties of a ternary Ar–H2–He mixture out of equilibrium up to 30 000K at atmospheric pressure. J Phys D Appl Phys 37:2232–2246

    Article  Google Scholar 

  • Aubreton J, Elchinger MF, Rat V, Fauchais P (2004b) Two-temperature transport coefficients in argon–helium thermal plasmas. J Phys D Appl Phys 37:34–41

    Article  Google Scholar 

  • Baeva M, Kozakov R, Gorchakov S, Uhrlandt D (2012) Two-temperature chemically non-equilibrium modeling of transferred arcs. Plasma Sources Sci Technol 21:055027 (13 pp)

    Article  Google Scholar 

  • Bonnefoi C (1983) Contribution to the study of solving methods of Boltzmann equation in a two-temperature plasma: example Ar-H2 mixture. State thesis, University of Limoges, France (in French)

    Google Scholar 

  • Boselli M, Colombo V, Ghedini E, Gherardi M, Sanibondi P (2013) Two-temperature modelling and optical emission spectroscopy of a constant current plasma arc welding process. J Phys D Appl Phys 46:224009 (11 pp)

    Article  Google Scholar 

  • Bruno D, Catalfamo C, Laricchiuta A, Giordano D, Capitelli M (2006) Convergence of Chapman-Enskog calculation of transport coefficients of magnetized argon plasma. Phys Plasmas 13:072307

    Article  Google Scholar 

  • Burm K.T.A.L., Goedheer W.J., Schram D.C. (2002) An alternative quantitative analysis of non-equilibrium transport coefficients in argon plasmas. Plasma Chem Plasma Process 22(3):413–435

    Article  Google Scholar 

  • Caesar T, Bollmann H, Steinmetz E, Wilhelmi H (2000) Efficient and accurate methods for the computation of thermodynamic and transport properties of multitemperature thermal plasma part I: thermodynamic and heavy particle transport properties. Plasma Chem Plasma Process 20(1):13–22

    Article  Google Scholar 

  • Capitelli M, Celiberto R, Gorse C, Laricchiuta A, Minelli P, Pagano D (2002) Electronically excited states and transport properties of thermal plasmas: the reactive thermal conductivity. Phys Rev E 66:016403

    Article  Google Scholar 

  • Capitelli M, Celiberto R, Gorse C, Laricchiuta A, Pagano D, Traversa P (2004) Transport properties of local thermodynamic equilibrium hydrogen plasmas including electronically excited states. Phys Rev E 69:026412

    Article  Google Scholar 

  • Capitelli M, Armenise I, Bisceglie E, Bruno D, Celiberto R, Colonna G, D’Ammando G, De Pascale O, Esposito F, Gorse C, Laporta V, Laricchiut A (2012) Thermodynamics transport and kinetics of equilibrium and non-equilibrium plasmas: a state-to-state approach. Plasma Chem Plasma Process 32:427–450

    Article  Google Scholar 

  • Capriati G, Colonna G, Gorse C, Capitelli M (1992) A parametric study of electron energy distribution functions and rate and transport coefficients in non-equilibrium helium plasmas. Plasma Chem Plasma Process 12(3):237–260

    Article  Google Scholar 

  • Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases, 3rd edn. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  • Chen X, Han P (1999) On the thermodynamic derivation of the Saha equation modified to a two-temperature plasma. J Phys D Appl Phys 32:1711–1718

    Article  Google Scholar 

  • Chen X, Li HP (2003) The reactive thermal conductivity for a two-temperature plasma. Heat Mass Transf 46:1443–1454

    Article  MATH  Google Scholar 

  • Colombo V, Ghedini E, Sanibondi P (2008) Thermodynamic and transport properties in non-equilibrium argon, oxygen and nitrogen thermal plasmas. Prog Nucl Energy 50:921–933

    Article  Google Scholar 

  • Colombo V, Ghedini E, Sanibondi P (2009) Two-temperature thermodynamic and transport properties of argon–hydrogen and nitrogen–hydrogen plasmas. J Phys D Appl Phys 42:055213 (12 pp)

    Article  Google Scholar 

  • Colombo V, Ghedini E, Sanibondi P (2011) Two-temperature thermodynamic and transport properties of carbon–oxygen plasmas. Plasma Sources Sci Technol 20:035003

    Article  Google Scholar 

  • Devoto RS (1965) The transport properties of a partially ionized monoatomic gas. PhD thesis, Stanford University, USA

    Google Scholar 

  • Devoto RS (1967) Simplified expressions for the transport properties of ionized monoatomic gases. Phys Fluids 10(10):2105–2112

    Article  Google Scholar 

  • Freton P, Gonzalez JJ, Ranarijaona Z, Mougenot J (2012) Energy equation formulations for two-temperature modeling of ‘thermal’ plasmas. J Phys D Appl Phys 45:465206

    Article  Google Scholar 

  • Ghorui S, Heberlein JVR, Pfender E (2007) Thermodynamic and transport properties of two-temperature oxygen plasmas. Plasma Chem Plasma Process 27:267–291

    Article  Google Scholar 

  • Ghorui S, Heberlein JVR, Pfender E (2008) Thermodynamic and transport properties of two-temperature nitrogen-oxygen. Plasma Chem Plasma Process 28:553–582

    Article  Google Scholar 

  • Hirschfelder JO, Curtiss CF, Bird RB (1964) Molecular theory of gases and liquids, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Hsu KC (1982) PhD thesis, University of Minnesota

    Google Scholar 

  • Meher KC, Tiwari N, Ghorui S, Das AK (2014) Multi-component diffusion coefficients in nitrogen plasma under thermal equilibrium and non-equilibrium conditions. Plasma Chem Plasma Process 34:949–974

    Article  Google Scholar 

  • Murphy AB (1993) Erratum: diffusion in equilibrium mixtures of ionized gases. Phys Rev E 50:5145. Phys Rev E 48:3594

    Article  Google Scholar 

  • Murphy AB (1997) Demixing in free burning arcs. Phys Rev E 55:7473–7494

    Article  Google Scholar 

  • Murphy AB (2000) Transport coefficients of hydrogen and argon–hydrogen plasmas. Plasma Chem Plasma Process 20:279–297

    Article  Google Scholar 

  • Murphy AB, Arundell CJ (1994) Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas. Plasma Chem Plasma Process 14(4):451–490

    Article  Google Scholar 

  • Paik S, Pfender E (1990) Argon plasma transport properties at reduced pressures. Plasma Chem Plasma Process 10(2):291–304

    Article  Google Scholar 

  • Potapov AV (1966) Chemical equilibrium of multitemperature systems. High Temp 4:48–51

    Google Scholar 

  • Rat V (2001) Contribution to the calculation of transport properties in non-equilibrium thermal plasmas taking into account a coupling between electrons and heavy species: applications to argon and argon–hydrogen mixture. PhD thesis, University of Limoges, France (in French)

    Google Scholar 

  • Rat V, André P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (2001a) A modified pseudo-equilibrium model competing with kinetic models to determine the composition of a two-temperature SF6 atmosphere plasma. J Phys D Appl Phys 34:2191–2204

    Article  Google Scholar 

  • Rat V, André P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (2001b) Transport properties in a two-temperature plasma: theory and application. Phys Rev E 64:26409–26428

    Article  Google Scholar 

  • Rat V, André P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (2002a) Transport coefficients including diffusion in a two-temperature argon plasma. J Phys D Appl Phys 35:981–991

    Article  Google Scholar 

  • Rat V, André P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (2002b) Two-temperature transport coefficients in argon–hydrogen plasmas – II: inelastic processes and influence of composition. Plasma Chem Plasma Process 22(4):475–493

    Article  Google Scholar 

  • Rat V, Murphy AB, Aubreton J, Elchinger MF, Fauchais P (2008) Treatment of non-equilibrium phenomena in thermal plasma flows, topical review. J Phys D Appl Phys 41:183001 (28 pp)

    Article  Google Scholar 

  • Sharma R, Singh G, Singh K (2011a) Higher-order contributions to transport coefficients in two-temperature hydrogen thermal plasma. Phys Plasmas 18:063504

    Article  Google Scholar 

  • Sharma R, Singh G, Singh K (2011b) Theoretical investigation of thermo-physical properties in two-temperature argon-helium thermal plasma. Phys Plasmas 18:083510

    Article  Google Scholar 

  • Sourd B, André P, Aubreton J, Elchinger M-F (2007a) Influence of the excited states of atomic nitrogen N(2D) and N(2P) on the transport properties of nitrogen, part I: atomic nitrogen properties. Plasma Chem Plasma Process 27:35–50

    Article  Google Scholar 

  • Sourd B, André P, Aubreton J, Elchinger M-F (2007b) Influence of the excited states of atomic nitrogen N(2D), N(2P) and N(R) on the transport properties of nitrogen part II: nitrogen plasma properties. Plasma Chem Plasma Process 27:225–240

    Article  Google Scholar 

  • Spitzer L (1956) Physics of fully ionized gases. Inter Science, New York

    MATH  Google Scholar 

  • Trelles JP, Heberlein JVR, Pfender E (2007) Non-equilibrium modeling of arc plasma torches. J Phys D Appl Phys 40:5937–5952

    Article  Google Scholar 

  • Trelles JP, Chazelas C, Vardelle A, Heberlein JVR (2009) Arc plasma torch modeling. J Therm Spray Technol 18(5–6):728–752

    Article  Google Scholar 

  • van de Sanden MCM, Schram PPJM, Peeters AG, van der Mullen JAM, Kroesen GMW (1989) Thermodynamic generalization of the Saha equation for a two-temperature plasma. Phys Rev A 40:5273–5276

    Article  Google Scholar 

  • Wang W, Rong M, Yan JD, Murphy AB, Spencer JW (2011) Thermophysical properties of nitrogen plasmas under thermal equilibrium and non-equilibrium conditions. Phys Plasmas 18(113502):1–18

    Google Scholar 

  • Zhang X-N, Li H-P, Murphy AB, Xia W-D (2013) A numerical model of non-equilibrium thermal plasmas. I. Transport properties. Phys Plasmas 20:033508

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher I. Boulos .

Nomenclature and Greek Symbols

\( {\overrightarrow{\mathrm{A}}}_{\upiota} \)

Vectorial coefficients for calculating the perturbation function Φi

b

Impact parameter defined as the perpendicular distance between the path of a projectile and the center of the field created by the object that the projectile is approaching (m)

bi

Number of atoms in a molecule of species i

\( \overleftrightarrow{{\mathrm{B}}_{\mathrm{i}}} \)

Second-order tensor allowing calculation of the perturbation function Φi

\( {\overrightarrow{\mathrm{v}}}_{ \mathrm{c}} \)

Center of mass velocity for two particles of type i and j (m/s)

\( {\overrightarrow{\mathrm{c}}}_{\mathrm{i}}^{\mathrm{j}} \)

Vectorial coefficients for calculating the perturbation function Φi

\( {\overrightarrow{\mathrm{d}}}_{\mathrm{i}} \)

Diffusion driving force of species i

dA

Elementary surface (m2)

\( \mathrm{d} \overrightarrow{\mathrm{r}} \)

Elementary volume in ordinary space (m3)

\( \mathrm{d} \overrightarrow{\mathrm{v}} \)

Elementary volume in velocity space: \( \left(\mathrm{d}, \overrightarrow{\mathrm{v}},=,\mathrm{d},{\mathrm{v}}_{\mathrm{x}},, .,, \mathrm{d},{\mathrm{v}}_{\mathrm{y}},, .,, \mathrm{d},{\mathrm{v}}_{\mathrm{z}}\right) \left({\mathrm{m}}^3/{\mathrm{s}}^3\right) \)

Da

Ambipolar diffusion coefficient (m2/s)

Di

Scalar coefficients for calculating the perturbation function Φi

Dij

Ordinary diffusion coefficient (m2/s)

D Ti

Thermal diffusion coefficient (kg/m.s)

D θij

Diffusion coefficient reflecting a mass transfer in the mixture, which tends to eliminate the temperature difference between electrons and heavy species

\( \overline{{\mathrm{D}}_{\mathrm{AB}}^{\mathrm{X}}} \)

Mean value of the diffusion coefficient between species A and B (m2/s)

\( \overline{{\mathrm{D}}_{\mathrm{BA}}^{\mathrm{X}}} \)

Mean value of the diffusion coefficient between species B and A (m2/s)

\( \overline{{\mathrm{D}}_{\mathrm{AB}}^{\mathrm{T}}} \)

Mean value of the thermal diffusion coefficient between species A and B (kg/m.s)

\( \overline{{\mathrm{D}}_{\mathrm{BA}}^{\mathrm{T}}} \)

Mean value of the thermal diffusion coefficient between species B and A (kg/m.s)

\( {\mathrm{D}}_{\mathrm{i}}^{\uptheta^{*}} \)

Non-equilibrium diffusion coefficient

e

Elementary charge (C)

\( \overrightarrow{\mathrm{E}} \)

Electric field (V/m)

E

Externally applied field (V/m)

fi

Distribution function of species i after collisions of the i species

fi

Distribution function of species i

f 0i

Maxwellian distribution function

\( {\overrightarrow{\mathrm{F}}}_{\mathrm{i}} \)

External force (N)

Fx

Component of the force in the x-direction (N)

g

Relative velocity of the species i and j (m/s)

h

Planck’s constant (h = 6.626 × 10−34 J.s)

Hi

Molar enthalpy of species i (kJ/mol)

I 0i

Zero-order approximation of Chapman–Enskog expansion

\( \overrightarrow{\mathrm{j}} \)

Current density vector

\( {\overrightarrow{\mathrm{J}}}_{\mathrm{E}} \)

Energy flux (W/m2)

\( {\overrightarrow{\mathrm{J}}}_{\mathrm{n}} \)

Particle flux (part/m2.s)

\( {\overrightarrow{\mathrm{J}}}_{\mathrm{px}} \)

Momentum flux in x-direction

\( {\overrightarrow{\mathrm{J}}}_{\mathrm{x}} \)

Flux of the quantity x

k

Boltzmann constant (k = 1.38 × 10−23 J/K)

Ki(W i, θij)

Term taking into account the thermal non-equilibrium when electrons and heavy species collide

Mean free path (m)

z

Mean free path in z-direction (m)

\( {\overline{\mathrm{m}}}_{\mathrm{A}} \)

Number–density–weighted average mass of the species present in gas A

\( {\overline{\mathrm{m}}}_{\mathrm{B}} \)

Number–density–weighted average mass of the species present in gas B

mi

Mass of the particle of chemical species i (kg)

Mi

Atomic mass of chemical species i (kg)

n

Number density (m−3)

ni

Number density of chemical species i (m−3)

p

Pressure (Pa)

\( \overleftrightarrow{\mathrm{p}} \)

Pressure tensor (Pa)

\( \overrightarrow{\mathrm{q}} \)

Heat flux (J/m2.s)

\( {\overrightarrow{\mathrm{q}}}_{\mathrm{i}} \)

Flux vector associated with the transport of kinetic energy of particles of species i (J/m2.s)

\( {\overrightarrow{\mathrm{q}}}_{\mathrm{R}} \)

Reactional heat flux vector (J/m2.s)

\( {\overrightarrow{\mathrm{q}}}_{\mathrm{z}} \)

Heat flux vector in z-direction (J/m2.s)

q lsij

Bracket integral

\( {\overline{\mathrm{Q}}}_{\mathrm{ij}}^{\mathrm{ls}} \)

Product of the reduced collision integral by the cross-sectional area presented by particles considered as hard spheres (m2)

\( \overrightarrow{\mathrm{r}} \)

Position vector

\( {\overrightarrow{\mathrm{r}}}^{*} \)

Relative position vector \( \left({\overrightarrow{\mathrm{r}}}^{*}={\mathrm{r}}_1-{\mathrm{r}}_2\right) \) (m)

rm

Distance of closest approach (m)

R

Perfect gas constant (R = 8.32 J/K.mole)

\( \overleftrightarrow{\mathrm{S}} \)

Stress tensor

T

Absolute temperature (K)

Te

Electron temperature (K)

Ti

Absolute temperature of species i (K)

Th

Heavy species temperature (K)

T*

Effective collision temperature \( {\mathrm{T}}^{*}={\left[\frac{1}{{\mathrm{m}}_{\mathrm{i}}+{\mathrm{m}}_{\mathrm{j}}}\left(\frac{{\mathrm{m}}_{\mathrm{i}}}{{\mathrm{T}}_{\mathrm{i}}}+\frac{{\mathrm{m}}_{\mathrm{j}}}{{\mathrm{T}}_{\mathrm{j}}}\right)\right]}^{-1} \)

\( \overleftrightarrow{\mathrm{U}} \)

Unity tensor

\( {\overrightarrow{\mathrm{U}}}_{\mathrm{i}} \)

Peculiar velocity \( \left({\overrightarrow{\mathrm{v}}}_{\mathrm{i}}-{\overrightarrow{\mathrm{v}}}_0={\overrightarrow{\mathrm{U}}}_{\mathrm{i}}\right) \) of particles of species i (m/s)

\( {\overrightarrow{\mathrm{U}}}_{\mathrm{ix}} \)

Peculiar velocity in the x-direction

vi

Velocity of particle i before collision (m/s)

v i

Velocity of particle i after collision (m/s)

\( {\overrightarrow{\mathrm{v}}}_{\mathrm{i}} \)

Velocity vector of particle of species i (m/s)

\( \overline{\mathrm{v}} \)

Mean velocity of particles (m/s)

\( {\overrightarrow{\mathrm{v}}}_0 \)

Mass-average velocity (m/s)

V(r)

Interaction potential

\( {\overrightarrow{\mathrm{V}}}_{\mathrm{ij}} \)

Relative velocity before collision \( \left({\overrightarrow{\mathrm{V}}}_{\mathrm{i}\mathrm{j}}={\overrightarrow{\mathrm{v}}}_{\mathrm{i}}-{\overrightarrow{\mathrm{v}}}_{\mathrm{j}}\right) \) (m/s)

\( {\overrightarrow{\mathrm{V}}}_{\mathrm{ij}}^{\prime } \)

Relative velocity after collision \( {\overrightarrow{\mathrm{V}}}_{\mathrm{i}\mathrm{j}}^{\prime }={\overrightarrow{\mathrm{v}}}_{\mathrm{i}}^{\prime }-{\overrightarrow{\mathrm{v}}}_{\mathrm{j}}^{\prime } \) (m/s)

\( {\overrightarrow{\mathrm{W}}}_{\mathrm{i}} \)

Reduced velocity before collision \( {\overrightarrow{\mathrm{W}}}_{\mathrm{i}}={\left(\frac{{\mathrm{m}}_{\mathrm{i}}}{2\mathrm{k}{\mathrm{T}}_{\mathrm{i}}}\right)}^{1/2}{\overrightarrow{\mathrm{V}}}_{\mathrm{i}} \)

\( {\overrightarrow{\mathrm{W}}}_{\mathrm{i}}^{\prime } \)

Reduced velocity after collision

xi

Molar fraction of species i

Zi

Charge number of the ith species

ΔEI

Ionization potential (eV)

ε

Incidence azimuthal angle

φi or Φi

First-order perturbation of the Maxwellian distribution of the Boltzmann equation

Φ

First-order perturbation function of the ith species with the temperature, Ti

γ2

Reduced energy \( {\upgamma}^2=\left({\upmu}_{\mathrm{ij}}/2\mathrm{k}{\mathrm{T}}^{*}\right){\mathrm{g}}^2 \)

κ

Thermal conductivity (W/m.K)

κe

Translational thermal conductivity of electrons (W/m.K)

κh

Translational thermal conductivity of heavy species (W/m.K)

κr

Reactional thermal conductivity (W/m.K)

κint

Internal thermal conductivity (W/m.K)

κ i

translational thermal conductivity of species i (W/m.K)

μ

Molecular viscosity (kg/m.s)

μe

Electron mobility (m2/V.s)

μj

Viscosity coefficient of the ith species (kg/m.s)

μij

Reduced mass \( {\upmu}_{\mathrm{i}\mathrm{j}}=\frac{{\mathrm{m}}_{\mathrm{i}}{\mathrm{m}}_{\mathrm{j}}}{{\mathrm{m}}_{\mathrm{i}}+{\mathrm{m}}_{\mathrm{j}}} \) (kg)

θ

Ratio of electron to heavy-particle temperatures \( \left(\uptheta ={\mathrm{T}}_{\mathrm{e}}/{\mathrm{T}}_{\mathrm{h}}\right) \)

θij

Ratio of particle i to particle j temperatures \( \left({\uptheta}_{\mathrm{ij}}={\mathrm{T}}_{\mathrm{e}}/{\mathrm{T}}_{\mathrm{h}}\right) \)

σel

Electrical conductivity (S/m)

σei

Electrical conductivity (S/m)

σii

Differential collision cross section

σj,A

elastic collision cross-section (m2)

νj,A

elastic collision frequency (s−1)

ξ

order of approximation (m2)

χ

Angle of deflection

Ω

Solid angle

Ω (ls)ij

Collision integral

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Boulos, M.I., Fauchais, P.L., Pfender, E. (2015). Transport Properties of Non-Equilibrium Plasmas. In: Handbook of Thermal Plasmas. Springer, Cham. https://doi.org/10.1007/978-3-319-12183-3_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12183-3_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-12183-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics