Skip to main content

Blow-Up Criteria of Strong Solutions and Conditional Regularity of Weak Solutions

  • Living reference work entry
  • First Online:
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
  • 379 Accesses

Abstract

Due to the lack of sufficiently strong a priori estimates to yield global-in-time smooth solutions, the compressible Navier-Stokes system suffers the same deficiency as most of its counterparts in continuum mechanics. On the one hand, in most cases for initial boundary value problems of multidimensional compressible Navier-Stokes equations with initial data of arbitrary size, only local well-posedness is known. On the other hand, the theory of global existence of weak solutions has been established by P. L. Lions in the barotropic case and developed by E. Feireisl and A. Novotný for the full system. The present chapter concerns with two interrelated aspects of compressible Navier-Stokes equations: blow-up mechanism of local strong solutions and conditional regularity of global weak solutions. For the barotropic Navier-Stokes equations, it is shown that the upper bound of the density must blow up provided the local strong solution breaks down at some time. For the full Navier-Stokes-Fourier system of ideal fluids, the regularity of local strong solutions is controlled by the upper and lower bounds of the density as well as the bound of the temperature. While for Navier-Stokes-Fourier system with more general structure, it is shown that Lipschitz bound of the velocity controls the regularity of strong solutions, which is similar to the classical situation on incompressible Navier-Stokes equations. Combining with the property of weak-strong uniqueness to weak solutions, it follows that the same conditions guarantee the regularity of weak solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Adams, J. Fournier, Sobolev Spaces, 2nd edn. Pure and Applied Mathematics, vol. 140 (Elsevier/Academic Press, Amsterdam, 2003)

    Google Scholar 

  2. S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Amann, Linear and Quasilinear Parabolic Problems, I (Birkhäuser Verlag, Basel, 1995)

    Book  MATH  Google Scholar 

  4. S. Antonsev, A. Kazhikhov, V. Monakov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. Translated from the Russian, Studies in Mathematics and its Applications, vol. 22 (North-Holland Publishing Co., Amsterdam, 1990)

    Google Scholar 

  5. J.T. Beale, T. Kato, A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. L.C. Berselli, G.P. Galdi, Regularity criterion involving the pressure for the weak solutions to the Navier-Stokes equations. Proc. Am. Math. Soc. 130, 3585–3595 (2002)

    Article  MATH  Google Scholar 

  7. M. Böhm, Existence of solutions to equations describing the temperature-dependent motion of a non-homogeneous viscous flow. Studies on Some Nonlinear Evolution Equations. Seminarberichte, vol. 17 (Humboldt-University, Berlin, 1979)

    Google Scholar 

  8. D. Bresch, B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pures Appl. 87, 57–90 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Brézis, S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun. P. D. E. 5, 773–789 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Caffarelli, R.V. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. X. Cai, Y. Sun, Blowup criteria for strong solutions to the compressible Navier-Stokes equations with variable viscosity. Nonlinear Anal. Real World Appl. 29, 1–18 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Cao, E.S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor. Arch. Ration. Mech. Anal. 202, 919–932 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Cho, H. Kim, Existence results for viscous polytropic fluids with vacuum. J. Differ. Equ. 228, 377–411 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Cho, H.J. Choe, H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. 83, 243–275 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. H.J. Choe, H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J. Differ. Equ. 190, 504–523 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. R. DiPerna, P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Escauriaza, G. Seregin, V. Šverák, L 3,  -solutions to the Navier-Stokes equations and backward uniqueness. Russ. Math. Surv. 58, 211–250 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Fan, S. Jiang, Y. Ou, A blow-up criterion for compressible viscous heat-conductive flows. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 337–350 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Feireisl, Dynamics of Viscous Compressible Fluids (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  20. E. Feireisl, Stability of flows of real monoatomic gases. Commun. P. D. E. 31, 325–348 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Feireisl, A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids (Birkhäuser, Basel, 2009)

    Book  MATH  Google Scholar 

  22. E. Feireisl, A. Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 204, 683–706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Feireisl, Y. Sun, Conditional regularity to the very weak solutions to the Navier-Stokes-Fourier system. Contem. Math. 666, 179–199 (2016)

    Article  MATH  Google Scholar 

  24. E. Feireisl, A. Novotný, H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3, 358–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Feireisl, A. Novotný, Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids. Indiana Univ. Math. J. 60, 611–631 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Feireisl, B.J. Jin, A. Novotny, Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech. 14, 717–730 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Feireisl, A. Novotný, Y. Sun, A regularity criterion for the weak solutions to the Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 212, 219–239 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system. J. Math. Fluid Mech. 13, 137–146 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic systems. Annals of Mathematics Studies, vol. 105 (Princeton University Press, Princeton, 1983)

    Google Scholar 

  30. D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Equ. 120, 215–254 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Hoff, Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat-conducting fluids. Arch. Ration. Mech. Anal. 139, 303–354 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. E. Hopf, Über die Anfangwertaufgaben für die hydromischen Grundgleichungen. Math. Nach. 4, 213–321 (1951)

    Article  MATH  Google Scholar 

  33. X. Huang, Z. Xin, A blow-up criterion for classical solutions to the compressible Navier-Stokes equations. Sci. China Math. 53, 671–686 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. X. Huang, J. Li, Z. Xin, Serrin-type criterion for the three dimensional viscous compressible flows. SIAM J. Math. Anal. 43, 1872–1886 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. X. Huang, J. Li, Z. Xin, Blow-up criterion for vicous barotropic flows with vacuum states. Commun. Math. Phys. 301, 23–35 (2011)

    Article  Google Scholar 

  36. X. Huang, J. Li, Z. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Commun. Pure Appl. Math. 65, 549–585 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. X. Huang, J. Li, Y. Wang, Serrin-type blowup criterion for full compressible Navier-Stokes system. Arch. Ration. Mech. Anal. 207, 303–316 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. N. Itaya, On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluid. Kōdai Math. Sem. Rep. 23, 60–120 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  39. N. Itaya, On the initial value problem of the motion of compressible viscous fluid, especially on the problem of uniqueness. J. Math. Kyoto Univ. 16, 413–427 (1976)

    MathSciNet  MATH  Google Scholar 

  40. L. Jiang, Y. Wang, On the blow up criterion to the 2-D compressible Navier-Stokes equations. Czech. Math. J. 60, 195–209 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. H. Kozono, Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Commun. Math. Phys. 214, 191–200 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. N.V. Krylov, Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms. J. Funct. Anal. 250, 521–558 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. O.A.V. Ladyzhenskaya, A.N. Solonnikov, N. Uralceva, Linear and Qusilinear Equations of Parabolic Type. AMS Translations of Mathematical Monographs, vol. 23 (American Mathematical Society, Providence, 1968)

    Google Scholar 

  44. L. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  45. F.H. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem. Commun. Pure Appl. Math. 51, 241–257 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. P.L. Lions, Mathematical Topics in Fluid Dynamics. Vol. 1, Incompressible Models (Oxford University Press, Oxford, 1996)

    Google Scholar 

  47. P.L. Lions, Mathematical Topics in Fluid Dynamics. Vol. 2, Compressible Models (Oxford Science Publication, Oxford, 1998)

    Google Scholar 

  48. A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  49. A. Matsumura, T. Nishida, The initial value problem for the equations of motion of compressible and heat conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Nash, Le Problème de Cauchy pour les équations différentielles d’un fluide général. Bulletin de la S.M.F. 90, 487–497 (1962)

    Google Scholar 

  51. G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  52. R. Salvi, I. Straškraba, Global existece for viscous compressible fluids and their behavior as t → . J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 40, 17–51 (1993)

    Google Scholar 

  53. J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  54. V.A. Solonnikov, Solvability of the initial boundary value problem for the equation of a viscous compressible fluid. J. Sovi. Math. 14, 1120–1133 (1980)

    Article  MATH  Google Scholar 

  55. Y. Sun, Z. Zhang, A blow-up criterion of strong solutions to the 2D compressible Navier-Stokes equations. Sci. China Math. 54, 105–116 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Y. Sun, C. Wang, Z. Zhang, A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navies-Stokes equations. J. Math. Pures Appl. 95, 36–47 (2011)

    Article  MATH  Google Scholar 

  57. Y. Sun, C. Wang, Z. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows. Arch. Ration. Mech. Anal. 201, 727–742 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. A. Tani, On the first initial-boundary value problem of compressible viscous fluid motion. Publ. RIMS Kyoto Univ. 13, 193–253 (1977)

    Article  MATH  Google Scholar 

  59. V.A. Vaǐgant, A.V. Kazhikhov, On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid. Sibirsk. Mat. Zh. 36, 1283–1316 (1995); translation in Siberian Math. J. 36, 1108–1141 (1995)

    Google Scholar 

  60. A. Valli, An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. 130, 197–213 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  61. A. Valli, A correction to the paper: an existence theorem for compressible viscous fluids. [Ann. Mat. Pura Appl. 130 197–213 (1982)]; Ann. Mat. Pura Appl. 132, 399–400 (1983)

    Google Scholar 

  62. A. Valli, M. Zajaczkowski, Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103, 259–296 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  63. A. Vasseur, C. Yu, Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations. Invent. Math. 206, 935–974 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  64. H. Wen, C. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum. Adv. Math. 248, 534–572 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of Yongzhong Sun is supported by NSF of China under Grant No. 11571167 and PAPD of Jiangsu Higher Education Institutions, and Zhifei Zhang is partially supported by the NSF of China under Grant No. 11371039 and 11425103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhong Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Sun, Y., Zhang, Z. (2016). Blow-Up Criteria of Strong Solutions and Conditional Regularity of Weak Solutions. In: Giga, Y., Novotny, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-10151-4_54-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10151-4_54-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-10151-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics