Skip to main content

Local and Global Existence of Strong Solutions Near General Equilibria

  • Living reference work entry
  • First Online:
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
  • 140 Accesses

Abstract

The purpose of this contribution is to show how the maximal regularity method can serve to prove existence of strong solutions to the Navier-Stokes equations. In order to illustrate the method, existence and uniqueness of global solutions to the Navier-Stokes equations for compressible fluids with or without heat conductivity in bounded domains shall be proved. The initial data have to be near equilibria that may be nonconstant due to considering large external potential forces. The exponential stability of equilibria in the phase space is shown and, above all, the problem is studied in Eulerian coordinates. The latter seems to be a novelty, since in works by other authors, global strong L p -solutions have been investigated only in Lagrangian coordinates; Eulerian coordinates are even declared as impossible to deal with, cf. on page 418 in Mucha, Zaja̧czkowski (ZAMM 84(6):417–424, 2004). The proof is based on a careful derivation and study of the associated linear problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Let A be the generator of the strongly continuous semigroup T(t). The growth bound ω 0(A) of A is defined by \(\omega _{0}(A) =\inf \{\omega \in \mathbb{R}:\exists M_{\omega } \geq 1,\text{ so that }\vert T(t)\vert \leq M_{\omega }e^{\omega t},\:\forall t \geq 0\}\).

  2. 2.

    Let xX an element of the Banach space X and X denotes its dual space. Then it is set \(\mathcal{J} (x) =\{ x^{{\ast}}\in X^{{\ast}}:\langle x\,,\,x^{{\ast}}\rangle _{X,X^{{\ast}}} = \vert x\vert _{X}^{2} = \vert x^{{\ast}}\vert _{X^{{\ast}}}^{2}\}\).

  3. 3.

    Although the duality spaces of \(\mathcal{X}_{p}^{2}\) and \(\mathcal{X}_{p}^{3}\) are not determined, one easily sees \(j(\theta ) \in \mathcal{J} (\theta )\) and \(j(\varrho ) \in \mathcal{J} (\varrho )\), e.g., there holds \(\langle \varrho \,,\,j(\varrho )\rangle _{\mathcal{X}_{p}^{3},(\mathcal{X}_{p}^{3})^{{\ast}}} =\|\varrho \|_{ \mathcal{X}_{p}^{3}}^{2}\) and \(\|\varrho \|_{\mathcal{X}_{p}^{3}} \leq \| j(\varrho )\|_{(\mathcal{X}_{p}^{3})} =\sup \{\langle \phi \,,\,j(\varrho )\rangle _{\mathcal{X}_{p}^{3},(\mathcal{X}_{p}^{3})^{{\ast}}}:\phi \in \mathcal{X}_{p}^{3},\vert \phi \vert _{\mathcal{X}_{p}^{3}} \leq 1\} \leq \|\varrho \|_{\mathcal{X}_{p}^{3}}\).

References

  1. H. Amann, Linear and Quasilinear Parabolic Problems Volume I: Abstract Linear Theory. Monographs in Mathematics, vol. 89 (Birkhäuser Verlag, Basel/Boston/Berlin, 1995)

    Google Scholar 

  2. P. Bella, E. Feireisl, B.J. Jin, A. Novotný, Robustness of strong solutions to the compressible Navier-Stokes system. Math. Ann. 362(1–2), 281–303 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Cho, H.J. Choe, H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. (9) 83(2), 243–275 (2004)

    Google Scholar 

  4. H.J. Choe, H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J. Differ. Equ. 190(2), 504–523 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math. 141, 579–614 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Danchin, On the solvability of the compressible Navier-Stokes system in bounded domains. Nonlinearity 2(23), 383–407 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Denk, M. Hieber, J. Prüss, Optimal L p- L q-estimates for parabolic boundary value problems with inhomogeneous data. Math. Z. 257(1), 193–224 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Desjardins, C.K. Lin, A survey of the compressible Navier-Stokes equations. Taiwan. J. Math. 3(2), 123–137 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Duan, H. Liu, S. Ukai, T. Yang, Optimal L p -L q convergence rates for the compressible Navier-Stokes equations with potential force. J. Differ. Equ. 238(1), 220–233 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Duan, S. Ukai, T. Yang, H.-J. Zhao, Optimal convergence rates for the compressible Navier-Stokes equations with potential forces. Math. Models Methods Appl. Sci. 17, 737–758 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Fang, R. Zi, T. Zhang, Decay estimates for isentropic compressible Navier-Stokes equations in bounded domain. J. Math. Anal. Appl. 386(2), 939–947 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Feireisl, Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and Its Applications (Oxford University Press, Oxford/New York, 2004)

    Google Scholar 

  13. E. Feireisl, A. Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 204, 683–706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Feireisl, D. Pražák, Asymptotic Behavior of Dynamical Systems in Fluid Mechanics. AIMS Series on Applied Mathematics (American Institute of Mathematical Sciences, Springfield, 2010)

    Google Scholar 

  15. W. Fiszdon, W.M. Zaja̧czkowski, Existence and uniqueness of solutions of the initial-boundary value problem for the flow of a barotropic viscous fluid, local in time. Arch. Mech. (Arch. Mech. Stos.) 35(4), 497–516 (1984)

    Google Scholar 

  16. H. Freistühler, M. Kotschote, Phase-field and Korteweg-type models for the time-dependent flow of compressible two-phase fluids. Arch. Ration. Mech. Anal. 224(1), 1–20 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Huang, D. Nie, Exponential stability for a one-dimensional compressible viscous micropolar fluid. Math. Methods Appl. Sci. 38(18), 5197–5206 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Itaya, On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids. Kodai Math. Sem. Rep. 23, 60–120 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Kagei, T. Kobayashi, Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space. Arch. Ration. Mech. Anal. 177, 231–330 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Kawashita, On global solutions of Cauchy problems for compressible Navier-Stokes equations. Nonlinear Anal. 48, 1087–1105 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Kobayashi, Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in \(\mathbb{R}^{3}\). Commun. Math. Phys. 200(3), 621–659 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Kobayashi, Y. Shibata, Remark on the rate of decay of solutions to linearized compressible Navier-Stokes equations. Pac. J. Math. 207(1), 199–234 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Kotschote, Strong solutions to the compressible non-isothermal Navier-Stokes equations. AMSA 22, 319–347 (2012)

    MathSciNet  MATH  Google Scholar 

  24. M. Kotschote, R. Zacher, Strong solutions in the dynamical theory of compressible fluid mixtures. Math. Models Methods Appl. Sci. 25(7), 1217–1256 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. O.A. Ladyzenskaya, V.A. Solonikov, N.N. Uralceva, Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs (American Mathematical Society, Providence, 1968)

    Google Scholar 

  26. H.-L. Li, A. Matsumura, G. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in \(\mathbb{R}^{3}\). Arch. Ration. Mech. Anal. 196(2), 681–713 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Lukaszewicz, An existence theorem for compressible viscous and heat conducting fluids. Math. Methods Appl. Sci. 6, 234–247 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Lukaszewicz, On the first initial-boundary value problem for the equations of motion of viscous and heat conducting gas. Arch. Mech. 36, 234–247 (1984)

    MathSciNet  MATH  Google Scholar 

  29. A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables (Springer, New York/Heidelberg, 1984)

    Book  MATH  Google Scholar 

  30. A. Matsumura, T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A 55, 337–342 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Matsumura, T. Nishida, The initial value problems for the equations of motion of compressible viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  32. P.B. Mucha, W.M. Zaja̧czkowski, On a L p -estimate for the linearized compressible Navier-Stokes equations with the Dirichlet boundary conditions. J. Differ. Equ. 186, 377–393 (2002)

    Google Scholar 

  33. P.B. Mucha, W.M. Zaja̧czkowski, Global existence of solutions of the Dirichlet problem for the compressible Navier-Stokes equations. ZAMM 84(6), 417–424 (2004)

    Google Scholar 

  34. J. Nash, Le Problème de Cauchy pour les équations différentielles d’un fluide général. Bull. Soc. Math. France 90, 487–497 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Novotný, I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications, vol. 27 (Oxford University Press, Oxford, 2004)

    Google Scholar 

  36. M. Padula, Asymptotic Stability of Steady Compressible Fluids (Springer, Heidelberg, 2010)

    MATH  Google Scholar 

  37. J. Prüss, Maximal regularity for abstract parabolic problems with inhomogeneous boundary data in L p -spaces. Math. Bohem. 127(2), 311–327 (2002)

    MathSciNet  MATH  Google Scholar 

  38. Y. Qin, Exponential stability for the compressible Navier-Stokes equations with the cylinder symmetry in \(\mathbb{R}^{3}\). Nonlinear Anal. Real World Appl. 11(5), 3590–3607 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Y. Qin, L. Jiang, Global existence and exponential stability of solutions in H 4 for the compressible Navier-Stokes equations with the cylinder symmetry. J. Differ. Equ. 249(6), 1353–1384 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Y. Qin, J. Zhang, X. Su, J. Cao, Global existence and exponential stability of spherically symmetric solutions to a compressible combustion radiative and reactive gas. J. Math. Fluid Mech. 18(3), 415–461 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Serrin, On the uniqueness of compressible fluid motions. Arch. Ration. Mech. Anal. 3, 271–288 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  42. Y. Shibata, K. Tanaka, On a resolvent problem for the linearized system from the dynamical system describing the compressible viscous fluid motion. Math. Methods Appl. Sci. 27, 1579–1606 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. V.A. Solonnikov, The solvability of the initial-boundary value problem for the equations of motion of a viscous compressible fluid (Russian). Zap. Nau. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 56, 128–142 (1976). Investigations on linear operators and theory of functions, VI

    Google Scholar 

  44. G. Ströhmer, About the resolvent of an operator from fluid dynamics. Math. Z. 194, 183–191 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  45. G. Ströhmer, About compressible viscous fluid flow in a bounded region. Pac. J. Math. 143, 359–375 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. Z. Tan, Y. Zhang, Strong solutions of the coupled Navier-Stokes-Poisson equations for isentropic compressible fluids. Acta Math. Sci. Ser. B Engl. Ed. 30(4), 1280–290 (2010)

    MathSciNet  MATH  Google Scholar 

  47. A. Tani, On the first initial-boundary value problem of compressible viscous fluid motion. Publ. Res. Inst. Math. Sci. 13, 193–253 (1977)

    Article  MATH  Google Scholar 

  48. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (North-Holland, Amsterdam, 1978)

    MATH  Google Scholar 

  49. A. Valli, An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. (IV) 13(132), 197–213, 399–400 (1982)

    Google Scholar 

  50. A. Valli, W.M. Zaja̧czkowski, Navier-Stokes equations for compressible fluids; Global existence and qualitative properties of solutions in the general case. Commun. Math. Phys. 103, 259–296 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Kotschote .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Kotschote, M. (2017). Local and Global Existence of Strong Solutions Near General Equilibria. In: Giga, Y., Novotny, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-10151-4_50-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10151-4_50-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10151-4

  • Online ISBN: 978-3-319-10151-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics