Skip to main content

Cationic Polymers for the Delivery of Therapeutic Nucleotides

  • Living reference work entry
  • First Online:
Polysaccharides

Abstract

In the last decade, insertion of a therapeutic gene and nucleotide into cells termed as gene therapy has shown tremendous potential to cure life-threatening severe diseases. This therapy involves carrying the therapeutic gene to the nucleus of an affected cell through a vector. Initially viral vectors were employed for this purpose, but low production yield, limited carrying capacity, and long-term safety concerns associated with viral vectors led to the development of nonviral vectors as gene carriers. Currently, used nonviral carriers include polymers and lipids with cationic charge. Cationic polymers provide an excellent alternative for gene delivery due to their water solubility, biodegradability, ease of modification, and excellent compatibility with body systems, but challenges still persist to optimize them as ideal vectors. This chapter provides an overview of present status of cationic polymers and challenges associated with their use for gene delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

PEI:

Polyethyleneimine

PLL:

Poly-l-lysine

ROS:

Reactive oxygen species

siRNA:

Small interfering RNA

FITC:

Fluorescein isothiocyanate

DNA:

Deoxyribonucleic acid

PEG:

Polyethylene glycol

CD:

Cyclodextrin

SPG:

Schizophyllan

PAMAM:

Poly(amidoamine)

References

  • Agrawal P, Gupta U et al (2007) Glycoconjugated peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials 28(22):3349–3359

    CAS  Google Scholar 

  • Azzam T, Eliyahu H et al (2004) Hydrophobized dextran-spermine conjugate as potential vector for in vitro gene transfection. J Control Release 96(2):309–323

    CAS  Google Scholar 

  • Banerjee T, Mitra S et al (2002) Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int J Pharm 243(1):93–105

    CAS  Google Scholar 

  • Behr JP (1997) The proton sponge: a trick to enter cells the viruses did not exploit. CHIMIA Int J Chem 51(1–2):34–36

    CAS  Google Scholar 

  • Boussif O, Lezoualc’h F et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci 92(16):7297–7301

    CAS  Google Scholar 

  • Bron R, Wahlberg JM et al (1993) Membrane fusion of Semliki Forest virus in a model system: correlation between fusion kinetics and structural changes in the envelope glycoprotein. EMBO J 12(2):693–701

    CAS  Google Scholar 

  • Bronich T, Kabanov AV et al (2001) A thermodynamic characterization of the interaction of a cationic copolymer with DNA. J Phys Chem B 105(25):6042–6050

    CAS  Google Scholar 

  • Brown MD, Schatzlein A et al (2000) Preliminary characterization of novel amino acid based polymeric vesicles as gene and drug delivery agents. Bioconjug Chem 11(6):880–891

    CAS  Google Scholar 

  • Calarco A, Bosetti M et al (2013) The genotoxicity of PEI-based nanoparticles is reduced by acetylation of polyethylenimine amines in human primary cells. Toxicol Lett 218(1):10–17

    CAS  Google Scholar 

  • Chen H-T, Neerman MF et al (2004) Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc 126(32):10044–10048

    CAS  Google Scholar 

  • Cho HJ, Chong S et al (2012) Poly-l-arginine and dextran sulfate-based nanocomplex for epidermal growth factor receptor (EGFR) siRNA delivery: its application for head and neck cancer treatment. Pharm Res 29(4):1007–1019

    CAS  Google Scholar 

  • Coussens LM, Fingleton B et al (2002) Matrix metalloproteinase inhibitors and cancer-trials and tribulations. Science 295(5564):2387–2392

    CAS  Google Scholar 

  • Cui X, Liu R et al (2014) Cationic Poly-l-Lysine-Fe2O3/SiO2 nanoparticles loaded with small interference RNA: application to silencing gene expression in primary rat neurons. J Nanosci Nanotechnol 14(4):2810–2815

    CAS  Google Scholar 

  • Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3(12):1023–1035

    CAS  Google Scholar 

  • Davis ME, Pun SH et al (2004) Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers. Curr Med Chem 11(2):179–197

    CAS  Google Scholar 

  • de Las Cuevas N, Garcia-Gallego S et al (2012) In vitro studies of water-stable cationic carbosilane dendrimers as delivery vehicles for gene therapy against HIV and hepatocarcinoma. Curr Med Chem 19(29):5052–5061

    Google Scholar 

  • De Smedt SC, Demeester J et al (2000) Cationic polymer based gene delivery systems. Pharm Res 17(2):113–126

    Google Scholar 

  • El Aneed A (2004) An overview of current delivery systems in cancer gene therapy. J Control Release 94(1):1–14

    Google Scholar 

  • Elouahabi A, Ruysschaert JM (2005) Formation and intracellular trafficking of lipoplexes and polyplexes. Mol Ther 11(3):336–347

    CAS  Google Scholar 

  • Figueroa ER, Lin AY et al (2014) Optimization of PAMAM-gold nanoparticle conjugation for gene therapy. Biomaterials 35(5):1725–1734

    CAS  Google Scholar 

  • Fischer D, Li Y et al (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24(7):1121–1131

    CAS  Google Scholar 

  • Flexner C, Barditch-Crovo PA et al (1991) Pharmacokinetics, toxicity, and activity of intravenous dextran sulfate in human immunodeficiency virus infection. Antimicrob Agents Chemother 35(12):2544–2550

    CAS  Google Scholar 

  • Frank DW, Gray JE et al (1976) Cyclodextrin nephrosis in the rat. Am J Pathol 83(2):367–382

    CAS  Google Scholar 

  • Godbey WT, Wu KK et al (1999a) Improved packing of poly (ethylenimine)/DNA complexes increases transfection efficiency. Gene Ther 6(8):1380–1389

    CAS  Google Scholar 

  • Godbey WT, Wu KK et al (1999b) Poly (ethylenimine) and its role in gene delivery. J Control Release 60(2):149–160

    CAS  Google Scholar 

  • Godbey WT, Wu KK et al (1999c) Size matters: molecular weight affects the efficiency of poly (ethyleneimine) as a gene delivery vehicle. J Biomed Mater Res 45(3):268–275

    CAS  Google Scholar 

  • Godbey WT, Wu KK et al (2001) Poly (ethylenimine)-mediated gene delivery affects endothelial cell function and viability. Biomaterials 22(5):471–480

    CAS  Google Scholar 

  • Goyal R, Tripathi SK et al (2011) Biodegradable poly(vinyl alcohol)-polyethylenimine nanocomposites for enhanced gene expression in vitro and in vivo. Biomacromolecules 13(1):73–83

    Google Scholar 

  • Grigsby CL, Leong KW (2010) Balancing protection and release of DNA: tools to address a bottleneck of non-viral gene delivery. J R Soc Interface 7(Suppl 1):S67–S82

    CAS  Google Scholar 

  • Guo X, Huang L (2011) Recent advances in nonviral vectors for gene delivery. Acc Chem Res 45(7):971–979

    Google Scholar 

  • Gupta M, Gupta AK (2004) Hydrogel pullulan nanoparticles encapsulating pBUDLacZ plasmid as an efficient gene delivery carrier. J Control Release 99(1):157–166

    CAS  Google Scholar 

  • Heinze T, Liebert T et al (2006) Functional polymers based on dextran. In: Klemm D (ed) Polysaccharides Il, vol 205. Springer, Berlin/Heidelberg, pp 199–291

    Google Scholar 

  • Hirano S, Seino H et al (1990) Chitosan: a biocompatible material for oral and intravenous administrations. In: Seino H (ed) Progress in biomedical polymers. Springer, New York, pp 283–290

    Google Scholar 

  • Hirano S, Iwata M et al (1991) Enhancement of serum lysozyme activity by injecting a mixture of chitosan oligosaccharides intravenously in rabbits (biological chemistry). Agric Biol Chem 55(10):2623–2625

    CAS  Google Scholar 

  • Horino S, Uchiyama T et al (2013) Gene therapy model of X-linked severe combined immunodeficiency using a modified foamy virus vector. PLoS One 8(8):e71594

    CAS  Google Scholar 

  • Hosseinkhani H, Aoyama T et al (2002) Liver targeting of plasmid DNA by pullulan conjugation based on metal coordination. J Control Release 83(2):287–302

    CAS  Google Scholar 

  • Hu Y, Xu B et al (2014) A mannosylated cell-penetrating peptide-graft-polyethylenimine as a gene delivery vector. Biomaterials 35(13):4236–4246

    CAS  Google Scholar 

  • Hwang SJ, Bellocq NC et al (2001) Effects of structure of β-cyclodextrin-containing polymers on gene delivery. Bioconjug Chem 12(2):280–290

    CAS  Google Scholar 

  • Ilium L (1998) Chitosan and its use as a pharmaceutical excipient. Pharm Res 15(9):1326–1331

    Google Scholar 

  • Illum L, Farraj NF et al (1994) Chitosan as a novel nasal delivery system for peptide drugs. Pharm Res 11(8):1186–1189

    CAS  Google Scholar 

  • Imamura M, Kodama Y et al (2014) Ternary complex of plasmid DNA electrostatically assembled with polyamidoamine dendrimer and chondroitin sulfate for effective and secure gene delivery. Biol Pharm Bull 37(4):552–559

    CAS  Google Scholar 

  • Jain K, Kesharwani P et al (2010) Dendrimer toxicity: let’s meet the challenge. Int J Pharm 394(1):122–142

    CAS  Google Scholar 

  • Jeong GJ, Byun HM et al (2007) Biodistribution and tissue expression kinetics of plasmid DNA complexed with polyethylenimines of different molecular weight and structure. J Control Release 118(1):118–125

    CAS  Google Scholar 

  • Jevprasesphant R, Penny J et al (2003) The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm 252(1):263–266

    CAS  Google Scholar 

  • Jo J, Yamamoto M et al (2006) Liver targeting of plasmid DNA with a cationized pullulan for tumor suppression. J Nanosci Nanotechnol 6(9–10):2853–2859

    CAS  Google Scholar 

  • Jo J, Okazaki A et al (2010) Preparation of cationized polysaccharides as gene transfection carrier for bone marrow-derived mesenchymal stem cells. J Biomater Sci Polym Ed 21(2):185–204

    CAS  Google Scholar 

  • Kanatani I, Ikai T et al (2006) Efficient gene transfer by pullulan-spermine occurs through both clathrin- and raft/caveolae-dependent mechanisms. J Control Release 116(1):75–82

    CAS  Google Scholar 

  • Karinaga R, Anada T et al (2006) Galactose-PEG dual conjugation of β-(1 → 3)-d-glucan schizophyllan for antisense oligonucleotides delivery to enhance the cellular uptake. Biomaterials 27(8):1626–1635

    CAS  Google Scholar 

  • Kean T, Roth S et al (2005) Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release 103(3):643–653

    CAS  Google Scholar 

  • Khan W, Muthupandian S et al (2011) Biodegradable polymers derived from amino acids. Macromol Biosci 11(12):1625–1636

    CAS  Google Scholar 

  • Khan W, Hosseinkhani H et al (2012) Polysaccharide gene transfection agents. Acta Biomater 8(12):4224–4232

    CAS  Google Scholar 

  • Khan W, Muthupandian S et al (2013) Cationic polymers for the delivery of therapeutic nucleotides. Pan Stanford, Singapore, pp 27–56

    Google Scholar 

  • Kim YH, Park JH et al (2005) Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. J Control Release 103(1):209–219

    CAS  Google Scholar 

  • Kim JK, Han KH et al (2006) Long-term clinical outcome of phase IIb clinical trial of percutaneous injection with holmium-166/chitosan complex (Milican) for the treatment of small hepatocellular carcinoma. Clin Cancer Res 12(2):543–548

    CAS  Google Scholar 

  • Kircheis R, Schuller S et al (1999) Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J Gene Med 1(2):111–120

    CAS  Google Scholar 

  • Kiss T, Fenyvesi F et al (2010) Evaluation of the cytotoxicity of beta-cyclodextrin derivatives: evidence for the role of cholesterol extraction. Eur J Pharm Sci 40(4):376–380

    CAS  Google Scholar 

  • Kitamura S, Hori T et al (1994) An antitumor, branched (1–3)-β-d-glucan from a water extract of fruiting bodies of Cryptoporus volvatus. Carbohydr Res 263(1):111–121

    CAS  Google Scholar 

  • Kittur FS, Vishu Kumar AB et al (2003) Low molecular weight chitosan-preparation by depolymerization with Aspergillus niger pectinase, and characterization. Carbohydr Res 338(12):1283–1290

    CAS  Google Scholar 

  • Kneuer C, Sameti M et al (2000) A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjug Chem 11(6):926–932

    CAS  Google Scholar 

  • Leclercq L, Boustta M et al (2010) Degradability of poly(l-lysine) and poly(dl-aminoserinate) complexed with a polyanion under conditions modelling physico-chemical characteristics of body fluids. J Colloid Interface Sci 350(2):459–464

    CAS  Google Scholar 

  • Leroy-Lechat F, Wouessidjewe D et al (1994) Evaluation of the cytotoxicity of cyclodextrins and hydroxypropylated derivatives. Int J Pharm 101(1):97–103

    CAS  Google Scholar 

  • Li Z, Zhu S et al (2005) Poly-l-lysine-modified silica nanoparticles: a potential oral gene delivery system. J Nanosci Nanotechnol 5(8):1199–1203

    CAS  Google Scholar 

  • Lim MJ, Min SH et al (2006) Targeted therapy of DNA tumor virus-associated cancers using virus-activated transcription factors. Mol Ther 13(5):899–909

    CAS  Google Scholar 

  • Lin C, Song Y et al (2014) Dextranation of bioreducible cationic polyamide for systemic gene delivery. Biomed Mater Eng 24(1):673–682

    CAS  Google Scholar 

  • Liu C, Xia Z et al (2007) Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Res Des 85(7):1051–1064

    CAS  Google Scholar 

  • Liu H, Wang Y et al (2014a) Fluorinated poly (propylenimine) dendrimers as gene vectors. Biomaterials 35(20):5407–5413

    CAS  Google Scholar 

  • Liu T, Xue W et al (2014b) Star-shaped cyclodextrin-poly (l-lysine) derivative co-delivering docetaxel and MMP-9 siRNA plasmid in cancer therapy. Biomaterials 35(12):3865–3872

    CAS  Google Scholar 

  • Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18(1):33–37

    CAS  Google Scholar 

  • Ma D, Lin QM et al (2014) A star-shaped porphyrin-arginine functionalized poly (l-lysine) copolymer for photo-enhanced drug and gene co-delivery. Biomaterials 35(14):4357–4367

    CAS  Google Scholar 

  • Mao S, Sun W et al (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev 62(1):12–27

    CAS  Google Scholar 

  • Matsumoto T, Numata M et al (2004) Chemically modified polysaccharide schizophyllan for antisense oligonucleotides delivery to enhance the cellular uptake efficiency. Biochim Biophys Acta 1670(2):91–104

    CAS  Google Scholar 

  • McConnell EL, Murdan S et al (2008) An investigation into the digestion of chitosan (noncrosslinked and crosslinked) by human colonic bacteria. J Pharm Sci 97(9):3820–3829

    CAS  Google Scholar 

  • Mellet CO, Fernendez JMG et al (2011) Cyclodextrin-based gene delivery systems. Chem Soc Rev 40(3):1586–1608

    CAS  Google Scholar 

  • Miura NN, Ohno N et al (1995) Comparison of the blood clearance of triple-and single-helical schizophyllan in mice. Biol Pharm Bull 18(1):185–189

    CAS  Google Scholar 

  • Muntimadugu E, Ickowicz DE et al (2013) Polysaccharide biomaterials. Isr J Chem 53(10):787–794

    CAS  Google Scholar 

  • Nagasaki T, Hojo M et al (2004) Long-term expression with a cationic polymer derived from a natural polysaccharide: schizophyllan. Bioconjug Chem 15(2):249–259

    CAS  Google Scholar 

  • Nishikawa M, Huang L (2001) Nonviral vectors in the new millennium: delivery barriers in gene transfer. Hum Gene Ther 12(8):861–870

    CAS  Google Scholar 

  • Noga M, Edinger D et al (2014) Characterization and compatibility of hydroxyethyl starch-polyethylenimine copolymers for DNA delivery. J Biomater Sci Polym Ed 25:1–17

    Google Scholar 

  • Ohsaki M, Okuda T et al (2002) In vitro gene transfection using dendritic poly (l-lysine). Bioconjug Chem 13(3):510–517

    CAS  Google Scholar 

  • Onishi H, Machida Y (1999) Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials 20(2):175–182

    CAS  Google Scholar 

  • Ono K, Saito Y et al (2000) Photocrosslinkable chitosan as a biological adhesive. J Biomed Mater Res 49(2):289–295

    CAS  Google Scholar 

  • Ooya T, Choi HS et al (2006) Biocleavable polyrotaxane-plasmid DNA polyplex for enhanced gene delivery. J Am Chem Soc 128(12):3852–3853

    CAS  Google Scholar 

  • Park MR, Han KO et al (2005) Degradable polyethylenimine-alt-poly (ethylene glycol) copolymers as novel gene carriers. J Control Release 105(3):367–380

    CAS  Google Scholar 

  • Petersen H, Merdan T et al (2002) Poly(ethylenimine-co-l-lactamide-co-succinamide): a biodegradable polyethylenimine derivative with an advantageous pH-dependent hydrolytic degradation for gene delivery. Bioconjug Chem 13(4):812–821

    CAS  Google Scholar 

  • Popielarski SR, Mishra S et al (2003) Structural effects of carbohydrate-containing polycations on gene delivery. 3. Cyclodextrin type and functionalization. Bioconjug Chem 14(3):672–678

    CAS  Google Scholar 

  • Priya SS, Rekha MR et al (2014) Pullulan-protamine as efficient haemocompatible gene delivery vector: synthesis and in vitro characterization. Carbohydr Polym 102:207–215

    CAS  Google Scholar 

  • Raemdonck K, Martens TF et al (2013) Polysaccharide-based nucleic acid nanoformulations. Adv Drug Deliv Rev 66(9):1123–1147

    Google Scholar 

  • Rao SB, Sharma CP (1997) Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res 34(1):21–28

    CAS  Google Scholar 

  • Reineke TM, Davis ME (2003) Structural effects of carbohydrate-containing polycations on gene delivery. 1. Carbohydrate size and its distance from charge centers. Bioconjug Chem 14(1):247–254

    CAS  Google Scholar 

  • Ren K, Ji J et al (2006) Construction and enzymatic degradation of multilayered poly-l-lysine/DNA films. Biomaterials 27(7):1152–1159

    CAS  Google Scholar 

  • Roberts JC, Bhalgat MK et al (1996) Preliminary biological evaluation of polyamidoamine (PAMAM) StarburstTM dendrimers. J Biomed Mater Res 30(1):53–65

    CAS  Google Scholar 

  • Romberg B, Hennink WE et al (2008) Sheddable coatings for long-circulating nanoparticles. Pharm Res 25(1):55–71

    CAS  Google Scholar 

  • Ruponen M, Yla Herttuala S et al (1999) Interactions of polymeric and liposomal gene delivery systems with extracellular glycosaminoglycans: physicochemical and transfection studies. Biochim Biophys Acta 1415(2):331–341

    CAS  Google Scholar 

  • Sakurai K, Shinkai S (2000) Molecular recognition of adenine, cytosine, and uracil in a single-stranded RNA by a natural polysaccharide: schizophyllan. J Am Chem Soc 122(18):4520–4521

    CAS  Google Scholar 

  • Shen Y, Zhou Z et al (2010) Charge-reversal polyamidoamine dendrimer for cascade nuclear drug delivery. Nanomedicine (Lond) 5(8):1205–1217

    CAS  Google Scholar 

  • Shen J, Kim HC et al (2014) Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics. Theranostics 4(5):487

    CAS  Google Scholar 

  • Shuai X, Merdan T et al (2005) Supramolecular gene delivery vectors showing enhanced transgene expression and good biocompatibility. Bioconjug Chem 16(2):322–329

    CAS  Google Scholar 

  • Smyth Templeton N (2002) Liposomal delivery of nucleic acids in vivo. DNA Cell Biol 21(12):857–867

    Google Scholar 

  • Sonaje K, Lin YH et al (2009) In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials 30(12):2329–2339

    CAS  Google Scholar 

  • Sun Y, Jiao Y et al (2014) The strategy to improve gene transfection efficiency and biocompatibility of hyperbranched PAMAM with the cooperation of PEGylated hyperbranched PAMAM. Int J Pharm 465(1):112–119

    CAS  Google Scholar 

  • Swami R, Singh I et al (2013) Diseases originate and terminate by genes: unraveling nonviral gene delivery. Drug Deliv Transl Res 3(6):593–610

    CAS  Google Scholar 

  • Takeda Y, Shimada N et al (2007) Ternary complex consisting of DNA, polycation, and a natural polysaccharide of schizophyllan to induce cellular uptake by antigen presenting cells. Biomacromolecules 8(4):1178–1186

    CAS  Google Scholar 

  • Takedatsu H, Mitsuyama K et al (2012) A new therapeutic approach using a schizophyllan-based drug delivery system for inflammatory bowel disease. Mol Ther 20(6):1234–1241

    CAS  Google Scholar 

  • Tang M, Szoka F (1997) The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther 4(8):823–833

    CAS  Google Scholar 

  • Thakor DK, Teng YD et al (2009) Neuronal gene delivery by negatively charged pullulan-spermine/DNA anioplexes. Biomaterials 30(9):1815–1826

    CAS  Google Scholar 

  • Thomas M, Lu JJ et al (2005) Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc Natl Acad Sci U S A 102(16):5679–5684

    CAS  Google Scholar 

  • Thomsen LB, Lichota J et al (2011) Gene delivery by pullulan derivatives in brain capillary endothelial cells for protein secretion. J Control Release 151(1):45–50

    CAS  Google Scholar 

  • Tiyaboonchai W, Woiszwillo J et al (2003) Formulation and characterization of DNA-polyethylenimine-dextran sulfate nanoparticles. Eur J Pharm Sci 19(4):191–202

    CAS  Google Scholar 

  • van Dijk-Wolthuis WNE, Franssen O et al (1995) Synthesis, characterization, and polymerization of glycidyl methacrylate derivatized dextran. Macromolecules 28(18):6317–6322

    Google Scholar 

  • Van Tomme SR, Hennink WE (2007) Biodegradable dextran hydrogels for protein delivery applications. Expert Rev Med Devices 4(2):147–164

    Google Scholar 

  • Varshosaz J (2012) Dextran conjugates in drug delivery. Expert Opin Drug Deliv 9(5):509–523

    CAS  Google Scholar 

  • Verheul RJ, Amidi M et al (2009) Influence of the degree of acetylation on the enzymatic degradation and in vitro biological properties of trimethylated chitosans. Biomaterials 30(18):3129–3135

    CAS  Google Scholar 

  • Wang D-a, Narang AS et al (2002) Novel branched poly (ethylenimine)-cholesterol water-soluble lipopolymers for gene delivery. Biomacromolecules 3(6):1197–1207

    CAS  Google Scholar 

  • Wang T, Upponi JR et al (2012) Design of multifunctional non-viral gene vectors to overcome physiological barriers: dilemmas and strategies. Int J Pharm 427(1):3–20

    CAS  Google Scholar 

  • Ward CM, Read ML et al (2001) Systemic circulation of poly (l-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy. Blood 97(8):2221–2229

    CAS  Google Scholar 

  • Wedmore I, McManus JG et al (2006) A special report on the chitosan-based hemostatic dressing: experience in current combat operations. J Trauma 60(3):655–658

    Google Scholar 

  • Williams DL, Sherwood ER et al (1988) Pre-clinical safety evaluation of soluble glucan. Int J Immunopharmacol 10(4):405–414

    CAS  Google Scholar 

  • Wolfert MA, Dash PR et al (1999) Polyelectrolyte vectors for gene delivery: influence of cationic polymer on biophysical properties of complexes formed with DNA. Bioconjug Chem 10(6):993–1004

    CAS  Google Scholar 

  • Yamano S, Dai J et al (2014) Long-term efficient gene delivery using polyethylenimine with modified Tat peptide. Biomaterials 35(5):1705–1715

    CAS  Google Scholar 

  • Yang C, Li H et al (2007a) Cationic star polymers consisting of α-cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors. Biomaterials 28(21):3245–3254

    CAS  Google Scholar 

  • Yang YM, Hu W et al (2007b) The controlling biodegradation of chitosan fibers by N-acetylation in vitro and in vivo. J Mater Sci Mater Med 18(11):2117–2121

    CAS  Google Scholar 

  • Yeo WWY, Hosseinkhani H et al (2014) Safety profile of dextran-spermine gene delivery vector in mouse lungs. J Nanosci Nanotechnol 14(5):3328–3336

    CAS  Google Scholar 

  • Yla Herttuala S (2012) Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther 20(10):1831–1832

    Google Scholar 

  • Yui N, Katoono R et al (2009) Functional cyclodextrin polyrotaxanes for drug delivery. In: Inclusion polymers. Springer, Berlin, pp 115–173

    Google Scholar 

  • Zhang H, Neau SH (2002) In vitro degradation of chitosan by bacterial enzymes from rat cecal and colonic contents. Biomaterials 23(13):2761–2766

    CAS  Google Scholar 

  • Zheng F, Shi XW et al (2007) Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration: results of an in vitro and in vivo study. Life Sci 80(4):388–396

    CAS  Google Scholar 

  • Zorzi GK, Parraga JE et al (2011) Hybrid nanoparticle design based on cationized gelatin and the polyanions dextran sulfate and chondroitin sulfate for ocular gene therapy. Macromol Biosci 11(7):905–913

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wahid Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Jain, A., Hosseinkhani, H., Domb, A.J., Khan, W. (2014). Cationic Polymers for the Delivery of Therapeutic Nucleotides. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-03751-6_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03751-6_44-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-03751-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics