Skip to main content

Cellulosic Biomaterials

  • Living reference work entry
  • First Online:
Polysaccharides

Abstract

Cellulose, the most abundant polymer on earth, holds a big potential for different applications in the biomedical field. This book chapter summarizes recent advances of cellulose research with respect to the new biomaterials paradigm. In this context, it is intended to give the reader an overview on the huge variety of cellulosic structures that are provided by nature or can be man-made. It highlights important examples of historical and recent cellulosic biomaterials and touches certain aspects of ongoing developments, which may form the basis for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal UP (2006) Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224:1141–1153

    CAS  Google Scholar 

  • Angles NM, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analyses. Macromolecules 33:8344–8353

    CAS  Google Scholar 

  • Astleya OM, Chanliaudb E, Donalda AM, Gidleyb MJ (2001) Structure of Acetobacter cellulose composites in the hydrated state. Int J Biol Macromol 29:193–202

    Google Scholar 

  • Becher J, Liebegott H, Berlin P, Klemm D (2004) Novel xylylene diaminocellulose derivatives for enzyme immobilization. Cellulose 11:119–126

    CAS  Google Scholar 

  • Berlin P, Klemm D, Tiller J, Rieseler R (2000) A novel soluble aminocellulose derivative type: its transparent film-forming properties and its efficient coupling with enzyme proteins for biosensors. Macromol Chem Phys 201:2070–2082

    CAS  Google Scholar 

  • Berlin P, Klemm D, Jung A, Liebegott H, Rieseler R, Tiller J (2003) Film-forming aminocellulose derivatives as enzyme-compatible support matrices for biosensor developments. Cellulose 10:343–367

    CAS  Google Scholar 

  • Bodin A, Concaro S, Brittberg M, Gatenholm P (2007) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med 1:406–408

    CAS  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180

    CAS  Google Scholar 

  • Brown RM Jr (1996) The biosynthesis of cellulose. Pure Appl Chem 10:1345–1373

    Google Scholar 

  • Brown RM Jr, Saxena MI (2000) Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiol Biochem 38:57–67

    CAS  Google Scholar 

  • Brown RM Jr, Willison JHM, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci U S A 73:4565–4569

    CAS  Google Scholar 

  • Brown RM Jr, Haigler CH, Cooper K (1982) Experimental induction of altered nonmicrofibrillar cellulose. Science 218:1141–1142

    Google Scholar 

  • Chazeau L, Cavaillé JY, Perez J (2000) Plasticized PVC reinforced with cellulose whiskers. II. Plastic behavior. J Polym Sci B Polym Phys 38:383–392

    CAS  Google Scholar 

  • Coleman HD, Ellis DD, Gilbert M, Mansfield SD (2006) Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism. Plant Biotechnol J 4:87–101

    CAS  Google Scholar 

  • Conte U, Maggi L, Torre ML, Giunchedi P, La Manna A (1993) Press-coated tablets for time-programmed release of drugs. Biomaterials 14:1017–1023

    CAS  Google Scholar 

  • Correa AC, Morais Teixeira E, Carmona VB et al (2014) Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose 21:311–322

    CAS  Google Scholar 

  • Cousins SK, Brown RM Jr (1995) Cellulose I microfibril assembly: computational molecular mechanics energy analysis favours bonding by van der Waals forces as the initial step in crystallization. Polymer 36:3885–3888

    CAS  Google Scholar 

  • Cross CF, Bevan BT, Beadle C (1893a) Thiokohlensäureester der cellulose. Ber Dtsch Chem Ges 26:1090–1097

    Google Scholar 

  • Cross CF, Bevan BT, Beadle C (1893b) Letters Patent of Great Britain, no 8,700, 6 Feb 1893

    Google Scholar 

  • Czaja W, Kawecki M, Krystynowicz A, Wysota K, Sakiel S, Wroblewski P (2004) Application of bacterial cellulose in treatment of second and third degree burns. In: The 227th ACS national meeting, Anaheim, 28 Mar–1 Apr 2004

    Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki S et al (2006) Microbial cellulose-the natural power to heal wounds. Biomaterials 27:145–151

    CAS  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM Jr (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12

    CAS  Google Scholar 

  • de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787

    Google Scholar 

  • de Vries HI (1951) Rotatory power and other optical properties of certain liquid crystals. Acta Crystallogr 4:219–226

    Google Scholar 

  • Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Höfte H, Gonneau M, Vernhettes S (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:15572–15577

    CAS  Google Scholar 

  • Dubief D, Samain E, Dufresne A (1999) Polysaccharide microcrystals reinforced amorphous poly(β-hydroxyoctanoate) nanocomposite materials. Macromolecules 32:5765–5771

    CAS  Google Scholar 

  • Dufresne A (2008) Polysaccharide nanocrystal reinforced nanocomposites. Can J Chem 86:484–494

    CAS  Google Scholar 

  • Dufresne A, Cavaille JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194

    CAS  Google Scholar 

  • Dufresne A, Kellerhals MB, Witholt B (1999) Transcrystallization in Mcl-PHAs/cellulose whiskers composites. Macromolecules 32:7396–7401

    CAS  Google Scholar 

  • Dulgar-Tulloch AJ, Bizios R, Siegel RW (2009) Human mesenchymal stem cell adhesion and proliferation in response to ceramic chemistry and nanoscale topography. J Biomed Mater Res Part A 90:586–594

    CAS  Google Scholar 

  • Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) Current international research into cellulosic fibers and composites. J Mater Sci 36:2107–2131

    CAS  Google Scholar 

  • Farah LF (1990) Process for the preparation of cellulose film, cellulose film produced thereby, artificial skin graft and its use. US Patent 4,912,049, 27 Mar 1990

    Google Scholar 

  • Favier V, Chanzy H, Cavaillé JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    CAS  Google Scholar 

  • Ferraz N, Carlsson DO, Hong J, Larsson R, Fellström B, Nyholm L, Strømme M, Mihranyan A (2012) Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification. J R Soc Interface 9:1943–1955

    CAS  Google Scholar 

  • Ferrone FA, Hofrichter J, Eaton WA (1985) Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J Mol Biol 183:611–631

    CAS  Google Scholar 

  • Fink HP, Purz HJ, Bohn A, Kunze J (1997) Investigation of the supramolecular structure of never dried bacterial cellulose. Macromol Symp 120:207–217

    CAS  Google Scholar 

  • Fontana JD, de Sousa AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 4:253–264

    Google Scholar 

  • French AD, Bertoniere NR, Brown RM Jr, Chanzy H, Gray D, Hattori K, Glasser W (2003) Cellulose. In: Kroscwitz JI, Mark HF (eds) Encyclopedia of polymer science and technology. Wiley, New York

    Google Scholar 

  • Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75

    CAS  Google Scholar 

  • Gotch F, Lipps B, Weaver J, Brandes J Jr, Rosin J, Sargent J, Oja P (1969) Chronic hemodialysis with the hollow fiber artificial kidney (HFAK). Trans Am Soc Artif Intern Organs 15:87–96

    CAS  Google Scholar 

  • Grassmann A, Gioberge S, Moeller S, Brown G (2005) ESRD patients in 2004: global overview of patient numbers, treatment modalities and associated trends. Nephrol Dial Transplant 20:2587–2593

    Google Scholar 

  • Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703

    CAS  Google Scholar 

  • Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30

    CAS  Google Scholar 

  • Heinze T, Nikolajski M, Daus S, Besong TM, Michaelis N, Berlin P, Morris GA, Rowe AJ, Harding SE (2011) Protein-like oligomerization of carbohydrates. Angew Chem Int Ed 50:8602–8604

    CAS  Google Scholar 

  • Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76:431–438

    Google Scholar 

  • Heyligers JMM, Arts CHP, Verhagen HJM, de Groot PG, Moll FL (2005) Improving small-diameter vascular grafts: from the application of an endothelial cell lining to the construction of a tissue-engineered blood vessel. Ann Vasc Surg 19:448–456

    CAS  Google Scholar 

  • Hipler UC, Elsner P, Fluhr JW (2006) A new silver-loaded cellulosic fiber with antifungal and antibacterial properties. In: Hipler UC, Elsner P (eds) Biofunctional textiles and the skin, vol 33, Current problems in dermatology. Karger, Basel, pp 165–178

    Google Scholar 

  • Hoenich NA, Woffindin C, Stamp S, Roberts SJ, Turnbull J (1997) Synthetically modified cellulose: an alternative to synthetic membranes for use in haemodialysis? Biomaterials 18:1299–1303

    CAS  Google Scholar 

  • Hon DN-S (1996) Cellulose and its derivatives: structures, reactions, and medical uses. In: Dumitriu S (ed) Polysaccharides in medical applications. Marcel Dekker, New York, pp 87–105

    Google Scholar 

  • Hornig S, Heinze T (2008) Efficient approach to design stable water-dispersible nanoparticles of hydrophobic cellulose esters. Biomacromolecules 9:1487–1492

    CAS  Google Scholar 

  • Huber HE, Christenson GL (1968) Utilisation of hydrophilic gums for the control of drug substance release from tablet formulations II. Influence of tablet hardness and density on dissolution behavior. J Pharm Sci 57:164–166

    CAS  Google Scholar 

  • Johnson RK, Zink-Sharp A, Renneckar SH, Glasser WG (2009) A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227–238

    CAS  Google Scholar 

  • Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106

    CAS  Google Scholar 

  • Joshi CP, Mansfield DS (2007) The cellulose paradox – simple molecule, complex biosynthesis. Curr Opin Plant Biol 10:220–226

    CAS  Google Scholar 

  • Jung A, Berlin P (2005) New water-soluble and film-forming aminocellulose tosylates as enzyme support matrices with Cu2+-chelating properties. Cellulose 12:67–84

    CAS  Google Scholar 

  • Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    CAS  Google Scholar 

  • Kawashima Y, Serigano T, Hino T, Yamamoto H, Takeuchi H (1998) A new powder design method to improve inhalation efficiency of pranlukast hydrate dry powder aerosols by surface modification with hydroxypropylmethylcellulose phthalate nanospheres. Pharm Res 15:1748–1752

    CAS  Google Scholar 

  • Kim C-W, Kim D-S, Kang S-Y, Marquez M, Joo YL (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47:5097–5107

    CAS  Google Scholar 

  • Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM Jr (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11:2075–2086

    CAS  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose – artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    CAS  Google Scholar 

  • Klemm D, Udhardt U, Marsch S, Schumann D (2003) Method and device for producing shaped microbial cellulose for use as biomaterial, especially for microsurgery. US Patent 0,013,163,A1, 2003

    Google Scholar 

  • Kolbe A, Meister F (2006) Functionalized cellulose based microcomposites. Macromol Symp 244:175–179

    CAS  Google Scholar 

  • Kolff WJ, Berk HTJ, ter Welle M, van der Ley AJW, van Dijk EC, van Noordwijk J (1944) The artificial kidney: a dialyser with a great area. Acta Med Scand 117:121–134

    Google Scholar 

  • Konwarh R, Karak N, Misra M (2013) Electrospun cellulose acetate nanofibers: the present status and gamut of biotechnological applications. Biotechnol Adv 31:421–437

    CAS  Google Scholar 

  • Kostag M, Köhler S, Liebert T, Heinze T (2010) Pure cellulose nanoparticles from trimethylsilyl cellulose. Macromol Symp 294:96–106

    CAS  Google Scholar 

  • Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci U S A 94:9091–9095

    CAS  Google Scholar 

  • Krässig HA (1993) Cellulose: structure, accessibility and reactivity. Gordon and Breach, Yverdon

    Google Scholar 

  • Kroon-Batenburg LMJ, Kroon J, Northolt MG (1986) Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers. Polym Commun 27:290–292

    CAS  Google Scholar 

  • Krystynowicz A, Czaja W, Pomorski L, Korodziejczyk M, Bielecki S (2000). The evaluation of usefulness of microbial cellulose as wound dressing material. In: 14th forum for applied biotechnology, Proceedings Part I. Meded Fac Landbouwwet-Rijksuniv Gent, Gent, pp 213–220

    Google Scholar 

  • Kucharzewski M, Slezak A, Franek A (2003) Topical treatment of nonhealing venous ulcers by cellulose membrane. Phlebologie 32:147–151

    Google Scholar 

  • Kumar CG (2011) A review of transdermal therapeutics system. Int J Pharm Technol 3:1367–1381

    CAS  Google Scholar 

  • Lapidus H, Lordi NG (1966) Some factors affecting the release of a water-soluble drug from a compressed hydrophilic matrix. J Pharm Sci 55:840–843

    CAS  Google Scholar 

  • Li F, Zhao Y, Song Y (2010) Core-shell nanofibers: nano channel and capsule by coaxial electrospinning. In: Kumar A (ed) Nanofibers. InTech, Rijeka, pp 419–438

    Google Scholar 

  • Liebert T (2010) Cellulose solvents-remarkable history bright future. In: Liebert T, Heinze T, Edgar K (eds) Cellulose solvents: for analysis, shaping and chemical modification, vol 1033, ACS symposium series. American Chemical Society, Washington, DC, pp 3–54

    Google Scholar 

  • Liebert T, Kostag M, Wotschadlo J, Heinze T (2011) Stable cellulose nanospheres for cellular uptake. Macromol Biosci 11:1387–1392

    CAS  Google Scholar 

  • Lin FC, Brown RM Jr, Cooper J, Delmer D (1985) Synthesis of fibrils in vitro by a solubulized cellulose synthase from Acetobacter xylinum. Science 230:822–825

    CAS  Google Scholar 

  • Lin Y-K, Chen K-H, Ou K-L, Liu M (2011) Effects of different extracellular matrices and growth factor immobilization on biodegradability and biocompatibility of macroporous bacterial cellulose. J Bioact Compat Polym 26(5):508–518

    CAS  Google Scholar 

  • Lin SP, Calvar IL, Catchmark JM, Liu JR, Demirci A, Cheng KC (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219

    CAS  Google Scholar 

  • MacLeod AM, Campbell MK, Cody JD, Daly C, Grant A, Khan I, Rabindranath KS, Vale L, Wallace SA (2005) Cellulose, modified cellulose and synthetic membranes in the haemodialysis of patients with end-stage renal disease. Cochrane Database Syst Rev CD003234

    Google Scholar 

  • Martson M, Viljanto J, Laippala P, Saukko P (1998) Connective tissue formation in subcutaneous cellulose sponge implants in the rat – the effect of the size and cellulose content of the implant. Eur Surg Res 30:419–425

    CAS  Google Scholar 

  • Martson M, Viljanto J, Hurme T, Laippala P, Saukko P (1999) Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials 20:1989–1995

    CAS  Google Scholar 

  • Mendes PN, Rahal SC, Pereira OCM Jr, Fabris VE, Lenharo SLR, de Lima-Neto JF, da Cruz Landim-Alvarenga F (2009) In vivo and in vitro evaluation of an Acetobacter xylinum synthesized microbial cellulose membrane intended for guided tissue repair. Acta Vet Scand 51:12

    Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    CAS  Google Scholar 

  • Mueller SC, Brown RM Jr (1980) Evidence for an intramembranous component associated with a cellulose microfibril synthesizing complex in higher plants. J Cell Biol 84:315–326

    CAS  Google Scholar 

  • Mutwil M, Debolt S, Persson S (2008) Cellulose synthesis: a complex complex. Curr Opin Plant Biol 11:252–257

    CAS  Google Scholar 

  • Nikolajski M, Wotschadlo J, Clement JH, Heinze T (2012) Amino-functionalized cellulose nanoparticles: preparation, characterization, and interactions with living cells. Macromol Biosci 12:920–925

    CAS  Google Scholar 

  • Nikolajski M, Adams GG, Gillis RB, Besong DT, Rowe AJ, Heinze T, Harding SE (2014) Protein-like fully reversible tetramerisation and super-association of an aminocellulose. Sci Rep 4:3861

    Google Scholar 

  • Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687

    CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    CAS  Google Scholar 

  • Nobel laureate (1953) The Nobel Prize in chemistry 1953. Nobel Media AB 2014. Web 10 Nov 2014. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1953/

  • Novaes AB Jr, Novaes AB (1993) Bone formation over a TiAl6V4 (IMZ) implant placed into an extraction socket in association with membrane therapy (Gengiflex). Clin Oral Implants Res 4:106–110

    Google Scholar 

  • Pääkköö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Google Scholar 

  • Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286

    CAS  Google Scholar 

  • Pillay V, Fassihi R (1999) Electrolyte-induced compositional heterogeneity: a novel approach for rate-controlled oral drug delivery. J Pharm Sci 88:1140–1148

    CAS  Google Scholar 

  • Pulkkinen H, Tiitu V, Lammentausta E, Laasanen MS, Hämäläinen ER, Kiviranta I, Lammi MJ (2006) Cellulose sponge as a scaffold for cartilage tissue engineering. Biomed Mater Eng 16:S29–S35

    CAS  Google Scholar 

  • Qi H, Sui X, Yuan J et al (2010) Electrospinning of cellulose-based fibers from NaOH/urea aqueous system. Macromol Mater Eng 295:695–700

    CAS  Google Scholar 

  • Rao VSR, Sundararajan PR, Ramakrishnan C, Ramachandran GN (1957) Conformational studies of amylose. In: Ramachandran GN (ed) Conformation of biopolymers, vol 1. Academic, New York, pp 721–737

    Google Scholar 

  • Reneker DH, Chun I (1996) Nanometer diameter fibers of polymer, produced by electrospinning. Nanotechnology 7:216–223

    CAS  Google Scholar 

  • Revol J-F, Bradford H, Giasson J et al (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    CAS  Google Scholar 

  • Ring DF, Nashed W, Dow T (1986) Liquid loaded pad for medical applications. US Patent 4,588,400, 13 May 1986

    Google Scholar 

  • Ring DF, Nashed W, Dow T (1987) Microbial polysaccharide articles and methods of production. US Patent 4,655,758, 7 Apr 1987

    Google Scholar 

  • Roberts EM, Hardison LK, Brown RM Jr (1986) Production of microbial cellulose. European Patent 0,186,495, 1986

    Google Scholar 

  • Römhild K, Wiegand C, Hipler UC et al (2013) Novel bioactive amino-functionalized cellulose nanofibers. Macromol Rapid Commun 34:1767–1771

    Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    CAS  Google Scholar 

  • Sanchez-Villanueva RJ, Gonzalez E, Quirce S, Díaz R, Alvarez L, Menéndez D, Rodríguez-Gayo L, Bajo MA, Selgas R (2014) Hypersensitivity reactions to synthetic haemodialysis membranes. Nefrologia 34:520–525

    Google Scholar 

  • Schaefer RM, Hörl WH, Kokot K, Heidland A (1987) Enhanced biocompatibility with a new cellulosic membrane: Cuprophan versus Hemophan. Blood Purif 5:262–267

    CAS  Google Scholar 

  • Scholten E, Bromberg L, Rutledge GC, Hatton TA (2011) Electrospun polyurethane fibers for absorption of volatile organic compounds from air. ACS Appl Mater Interfaces 10:3902–3909

    Google Scholar 

  • Schubert S, Schlufter K, Heinze T (2011) Configurations, structures, and morphologies of cellulose. In: Popa V (ed) Polysaccharides in medicinal and pharmaceutical applications. Smithers, Shrewsbury, pp 1–55

    Google Scholar 

  • Schweizer ME (1857) Das Kupferoxyd-Ammoniak, ein Auflösungsmittel für die Pflanzenfaser. J Prakt Chem 72:109–111

    Google Scholar 

  • Sibilla P, Sereni A, Aguiari G, Banzi M, Manzati E, Mischiati C, Trombelli L, del Senno L (2006) Effects of a hydroxyapatite-based biomaterial on gene expression in osteoblast-like cells. J Dent Res 85:354–358

    CAS  Google Scholar 

  • Staniforth JN, Baichwal AR (1993) Synergistically interacting heterodisperse polysaccharides. In: El-Nokaly MA, Piatt DM, Charpentier BA (eds) Polymeric delivery systems, vol 520, ACS symposium series. American Chemical Society, Washington, DC, pp 327–350

    Google Scholar 

  • Steege H-H, Philipp B (1974) Production, characterization, and use of microcrystalline cellulose. Zellst Pap 23:68–73

    CAS  Google Scholar 

  • Stevens B, Yang YZ, Mohandas A, Stucker B, Nguyen KT (2008) A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res Part B 85:573–582

    Google Scholar 

  • Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431

    CAS  Google Scholar 

  • Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526

    CAS  Google Scholar 

  • Teif VB, Bohinc K (2011) Condensed DNA: condensing the concepts. Prog Biophys Mol Biol 105:208–222

    CAS  Google Scholar 

  • Tiller J, Berlin P, Klemm D (1999) Soluble and film-forming cellulose derivatives with redox-chromogenic and enzyme immobilizing 1,4-phenylenediamine groups. Macromol Chem Phys 200:1–9

    CAS  Google Scholar 

  • Tiller J, Berlin P, Klemm D (2000) Novel matrices for biosensor application by structural design of redox-chromogenic aminocellulose esters. J Appl Polym Sci 75:904–915

    CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1982) Suspensions containing microfibrillated cellulose. European Patent 19,810,108,847, 12 May 1982

    Google Scholar 

  • Vandamme EJ, De Baets S, Vanbaelen A, Joris K, de Wulf P (1998) Improved production of bacterial cellulose and its application potential. Polym Degrad Stab 59:93–99

    CAS  Google Scholar 

  • Viswanathan G, Murugesan S, Pushparaj V et al (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7:415–418

    CAS  Google Scholar 

  • Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84(1):533–538

    CAS  Google Scholar 

  • Wertz JL, Bedue O, Mercier JP (2010) Cellulose science and technology. EPFL Press, Lausanne

    Google Scholar 

  • Williams DF (1987) Definitions in biomaterials. In: Proceedings of a consensus conference of the European Society for Biomaterials, Chester, 3–5 Mar 1986

    Google Scholar 

  • Williams DF (2009) On the nature of biomaterial. Biomaterials 30:5897–5909

    CAS  Google Scholar 

  • Wondraczek H, Petzold-Welcke K, Fardim P, Heinze T (2013) Nanoparticles from conventional cellulose esters: evaluation of preparation methods. Cellulose 20:751–760

    CAS  Google Scholar 

  • Xie J, Li X, Xia Y (2008) Putting electrospun nanofibers to work for biomedical research. Macromol Rapid Commun 29:1775–1792

    CAS  Google Scholar 

  • Yu JG, Yu LY, Jiang XY, Chen XQ, Tao LJ, Jiao FP (2013) Hemodialysis membranes for acute and chronic renal insufficiency. Curr Neurovasc Res 10:263–268

    CAS  Google Scholar 

  • Zaborowska M, Bodin A, Bäckdahl H, Popp J, Goldstein A, Gatenholm P (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6:2540–2547

    CAS  Google Scholar 

  • Zang S, Sun Z, Liu K, Wang G, Zhang R, Liu B, Yang G (2014) Ordered manufactured bacterial cellulose as biomaterial of tissue engineering. Mater Lett 128:314–318

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Holger Wondraczek or Thomas Heinze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Wondraczek, H., Heinze, T. (2014). Cellulosic Biomaterials. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-03751-6_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03751-6_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-03751-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics