Skip to main content

Function Spaces in Quaternionic and Clifford Analysis

  • Living reference work entry
  • First Online:
Operator Theory
  • 370 Accesses

Abstract

The purpose of this chapter is to describe the settings in which one can set up coherent generalizations to several variables of the classical single variable complex analysis and to point out some basic properties of the function spaces that naturally occur in such settings. Particular emphasis is placed on defining proper counterparts in higher dimension of the concept of holomorphic functions and of the Cauchy–Riemann operator. The resulting function theory deals with monogenic functions and Euclidean Dirac or Cauchy–Riemann operators. Its richness is illustrated by the existence of a general Cauchy–Pompeiu Integral Representation Formula. Actually, even more general formulas will be initially derived for first order homogeneous differential operators with constant coefficients in a unital associative Banach algebra. The point that will be made is that the operators and algebras that yield the simplest forms of such Integral Representation Formulas with Remainders are essentially the Cauchy–Riemann and Dirac operators associated with Euclidean Clifford algebras. As yet another generalization of a classical result in single variable complex analysis one gets a Quantitative Hartogs–Rosenthal Theorem concerned with uniform approximation on compact sets by monogenic functions. An equally important goal of the chapter is to outline some of the contributions that led to the discovery and development of Quaternion and Clifford analysis. The last section includes several concluding remarks and a few additional references that outline the full scope of some of the early and current developments, and help in further explorations of other lines of research in quaternion and Clifford analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Ablamowicz, R. (ed.): Clifford Algebras Applications to Mathematics, Physics, and Engineering. Progress in Mathematical Physics, vol. 34. Birkhäuser, Boston (2004)

    Google Scholar 

  2. Ablamowicz, R., Fauser, B. (eds.): Clifford Algebras and their Applications in Mathematical Physics, Volume 1: Algebra and Physics. Progress in Mathematical Physics, vol. 18. Birkhäuser, Boston (2000)

    Google Scholar 

  3. Ahlfors, L., Beurling, A.: Conformal invariants and function theoretic null sets. Acta Math.83, 101–129 ( 1950)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alexander, H.: Projections of polynomial hulls. J. Funct. Anal.13, 13–19 (1973)

    Article  MATH  Google Scholar 

  5. Alexander, H.: On the area of the spectrum of an element of a uniform algebra. In: Complex Approximation Proceedings, pp. 3–12, Quebec, 3–8 July 1978. Birkhäuser, Basel (1980)

    Google Scholar 

  6. Anglès, P.: Conformal Groups in Geometry and Spin Structures. Progress in Mathematical Physics, vol. 50. Birkhäuser, Boston (2008)

    Google Scholar 

  7. Bernstein, S.: A Borel-Pompeiu formula in \(\mathbb{C}^{n}\) and its applications to inverse scattering theory. In: Clifford Algebras and Their Applications in Mathematical Physics. Progress in Mathematical Physics Series, vol. 19, pp. 117–185. Birkhäuser, Boston (2000)

    Google Scholar 

  8. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman Research Notes in Mathematics Series, vol. 76. Pitman, Massachusetts (1982)

    Google Scholar 

  9. Browder, F.: Functional analysis and partial differential equations. II. Math. Ann.145, 81–226 (1961)

    Article  MathSciNet  Google Scholar 

  10. Browder, F.: Approximation by solutions of partial differential equations. Am. J. Math.84, 134–160 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  11. Colombo, F., Sabadini,I., Sommen, F., Struppa, D.C.: Analysis of Dirac Systems and Computational Algebra. Progress in Mathematical Physics, vol. 39. Birkhäuser, Boston ( 2004)

    Google Scholar 

  12. Deavours, C.A.: The quaternion calculus. Am. Math. Mon.80, 995–1008 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  13. Delanghe, R.: On regular-analytic functions with values in a Clifford algebra. Math. Ann.185, 91–111 (1970)

    Article  MathSciNet  Google Scholar 

  14. Delanghe, R.: On regular points and Liouville’s theorem functions with values in a Clifford algebra. Simon Stevin 44, 55–66 (1970–1971)

    MATH  MathSciNet  Google Scholar 

  15. Delanghe, R.: On the singularities of functions with values in a Clifford algebra. Math. Ann.196, 293–319 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  16. Delanghe, R., Krausshar, R.S., Malonek, H.R.: Differentiability of functions with values in some real associative algebras: Approaches to an old problem. Bulletin de la Société Royale des Sciences de Liège 70(4–6), 231–249 (2001)

    MATH  MathSciNet  Google Scholar 

  17. Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions. Kluwer, Dordrecht (1982)

    Google Scholar 

  18. Fueter, R.: Analytische Funktionen einer Quaternionenvariablen. Comment. Math. Helv.4 , 9–20 (1932)

    Article  MathSciNet  Google Scholar 

  19. Fueter, R.: Die Funktionentheorie der Differentialgleichungen \(\Delta u = 0\) und \(\Delta \Delta u = 0\) mit vier reellen Variablen. Comment. Math. Helv.7, 307–330 (1935)

    Article  MathSciNet  Google Scholar 

  20. Fueter, R.: Über die analytische Darstellung der regulären Funktionen einer Quaternionen variablen. Comment. Math. Helv.8, 371–378 (1936)

    Article  MathSciNet  Google Scholar 

  21. Fueter, R.: Die Singularitäten der eindeutigen regulären Funktionen einer Quaternionen-variablen. Comment. Math. Helv.9, 320–335 (1937)

    Article  Google Scholar 

  22. Gamelin, T.W.: Uniform Algebras. Prentice Hall, Englewood Cliffs (1969)

    MATH  Google Scholar 

  23. Gilbert, J.E., Murray, M.A.M.: Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge Studies in Advanced Mathematics, vol. 26. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  24. Gürlebeck, K., Sprössig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley, Chichester (1997)

    MATH  Google Scholar 

  25. Haefeli, H.: Hyperkomplexe differentiale. Comment. Math. Helv.20, 382–420 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hamilton, W.R.: Elements of Quaternions. Longmans Green, London (1866)

    Google Scholar 

  27. Hartogs, F., Rosenthal, A.: Über Folgen analytischer Functionen. Math. Ann.104, 606–610 (1931)

    Article  MathSciNet  Google Scholar 

  28. Hausdorff, F.: Zür Theorie der Systeme complexer Zahlen. Leipz. Ber.52, 43–61 (1900)

    Google Scholar 

  29. Hile, G.N.: Representations of solutions of a special class of first order systems. J. Differ. Equ.25, 410–424 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  30. Iftimie, V.: Fonctions hypercomplexes. Bull. Math. Soc. Sci. Math RSR 57, 279–332 (1965)

    MathSciNet  Google Scholar 

  31. Krausshar, R.S.: Generalized Analytic Automorphic Forms in Hypercomplex Spaces. Frontiers in Mathematics Series, vol. 15. Birkhäuser, Basel (2004)

    Google Scholar 

  32. Kravchenko, V.V., Shapiro, M.V.: Integral Representations for Spatial Models of Mathematical Physics. Pitman Research Notes in Mathematics Series, vol. 351. Longman, Harlow (1996)

    Google Scholar 

  33. Krylov, N.M.: On Rowan Hamilton’s quaternions and the notion of monogenicity (in Russian). Dokl. Akad. Nauk SSSR 55, 799–800 (1947)

    Google Scholar 

  34. Malonek, H.R.: Representations of solutions of a special class of first order systemsA new hypercomplex structure of the Euclidean space \(\mathbb{R}^{m+1}\) and the concept of hypercomplex differentiability. Complex Var.14, 25–33 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  35. Malonek, H.R.: Power series representations for monogenic functions in \(\mathbb{R}^{m+1}\) based on a permutation product. Complex Var.15, 181–191 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  36. Martin, M.: Higher-dimensional Ahlfors-Beurling inequalities in Clifford analysis. Proc. Am. Math. Soc.126, 2863–2871 (1998)

    Article  MATH  Google Scholar 

  37. Martin, M.: Convolution and maximal operator inequalities. In: Clifford Algebras and Their Applications in Mathematical Physics. Progress in Mathematical Physics, vol. 19, pp. 83–100. Birkhäuser, Boston (2000)

    Google Scholar 

  38. Martin, M.: Spin geometry, Clifford analysis, and joint seminormality. In: Advances in Analysis and Geeometry. Trends in Mathematics Series, vol. 1, pp. 227–255. Birkhäuser, Boston (2004)

    Google Scholar 

  39. Martin, M.: Uniform approximation by solutions of elliptic equations and seminormality in higher dimensions. Operator Theory: Advances and Applications, vol. 149, pp. 387–406. Birkhäuser, Basel (2004)

    Google Scholar 

  40. Martin, M.: Uniform approximation by closed forms in several complex variables. Adv. Appl. Clifford Algebras 19 (3–4), 777–792 (2009)

    Article  MATH  Google Scholar 

  41. Martin, M.: Deconstructing Dirac operators. I: Quantitative Hartogs-Rosenthal theorems. In: More Progress in Analysis. Proceedings of the Fifth International Society for Analysis, Its Applications and Computation Congress, ISAAC 2005, pp. 1065–1074. World Scientific, Singapore (2009)

    Google Scholar 

  42. Martin, M.: Deconstructing Dirac operators. III: Dirac and semi-Dirac pairs. In: Operator Theory: Advances and Applications, vol. 203, pp. 347–362. Birkhäuser, Basel (2009)

    Google Scholar 

  43. Martin, M.: Deconstructing Dirac operators. II: Integral representation formulas. In: Hypercomplex Analysis and Applications. Trends in Mathematics; Proceedings of the 7th International Society for Analysis, Its Applications and Computation Congress, ISAAC 2009, London, pp. 195–211. Springer, Basel (2011)

    Google Scholar 

  44. Mejlihzon, A.Z.: On the notion of monogenic quaternions (in Russian). Dokl. Akad. Nauk SSSR 59, 431–434 (1948)

    Google Scholar 

  45. Mitrea, M.: Singular Integrals, Hardy Spaces, and Clifford Wavelets. Lecture Notes in Mathematics, vol. 1575. Springer, Berlin (1994)

    Google Scholar 

  46. Qian, T., Hempfling, Th., McIntosh, A., Sommen, F. (eds.): Advances in Analysis and Geometry. New Developments Using Clifford Algebras. Trends in Mathematics Series, vol. 14. Birkhäuser, Basel (2004)

    Google Scholar 

  47. Rocha-Chavez, R., Shapiro M., Sommen, F.: On the singular Bochner-Martinelli integral. Integr. Equ. Oper. Theory 32, 354–365 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  48. Rocha-Chavez, R., Shapiro M., Sommen, F.: Analysis of functions and differential forms in \(\mathbb{C}^{m}\). In: Proceedings of the Second International Society for Analysis, Its Applications and Computation Congress, ISAAC 1999, pp. 1457–1506. Kluwer, Dordrecht (2000)

    Google Scholar 

  49. Rocha-Chavez, R., Shapiro M., Sommen, F.: Integral theorems for solutions of the complex Hodge-Dolbeault system. In: Proceedings of the Second International Society for Analysis, Its Applications and Computation Congress, ISAAC 1999, pp. 1507–1514. Kluwer, Dordrecht (2000)

    Google Scholar 

  50. Rocha-Chavez, R., Shapiro M., Sommen, F.: Integral Theorems for Functions and Differential Forms in \(\mathbb{C}^{m}\). Research Notes in Mathematics, vol. 428. Chapman & Hall, Boca Raton (2002)

    Google Scholar 

  51. Ryan, J.: Applications of complex Clifford analysis to the study of solutions to generalized Dirac and Klein-Gordon equations, with holomorphic potential. J. Differ. Equ.67, 295–329 (1987)

    Article  MATH  Google Scholar 

  52. Ryan, J.: Cells of harmonicity and generalized Cauchy integral formulae. Proc. Lond. Math. Soc.60, 295–318 (1990)

    Article  Google Scholar 

  53. Ryan, J.: Plemelj formulae and transformations associated to plane wave decompositions in complex Clifford analysis. Proc. Lond. Math. Soc.64, 70–94 (1991)

    Google Scholar 

  54. Ryan, J. (ed.): Clifford Algebras in Analysis and Related Topics. CRC Press, Boca Raton (1995)

    Google Scholar 

  55. Ryan, J.: Intrinsic Dirac operators in \(\mathbb{C}^{n}\). Adv. Math.118, 99–133 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  56. Ryan, J., Sprössig, W. (eds.): Clifford Algebras and Their Applications in Mathematical Physics, Volume 2: Clifford Analysis. Progress in Mathematical Physics, vol. 19. Birkhäuser, Boston (2000)

    Google Scholar 

  57. Sabadini, I., Shapiro, M., Sommen, F. (eds.): Hypercomplex Analysis. Trends in Mathematics Series, vol. 6. Birkhäuser, Basel (2009)

    Google Scholar 

  58. Scheffers, G.: Verallgemeinerung der Grundlagen der gewöhnlichen complexen Zahlen. Berichte kgl. Sächs. Ges. der Wiss.52, 60 (1893)

    Google Scholar 

  59. Shapiro, M.: Some remarks on generalizations of the one-dimensional complex analysis: hypercomplex approach. In: Functional Analytic Methods in Complex Analysis and Applications to Partial Differential Equations, pp. 379–401. World Scientific, Singapore (1995)

    Google Scholar 

  60. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  61. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  62. Sommen, F.: Martinelli-Bochner formulae in complex Clifford analysis. Zeitschrift für Analysis und ihre Anwendungen 6, 75–82 (1987)

    MATH  MathSciNet  Google Scholar 

  63. Sommen, F.: Defining a q-deformed version of Clifford analysis. Complex Var. Theory Appl.34, 247–265 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  64. Sudbery, A.: Quaternionic analysis. Math. Proc. Camb. Philos. Soc.85, 199–225 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  65. Tarkhanov, N.N.: The Cauchy Problem for Solutions of Elliptic Equations. Akademie, Berlin (1995)

    MATH  Google Scholar 

  66. Vasilevski, N., Shapiro, M.: Some questions of hypercomplex analysis. In: Complex Analysis and Applications, Sofia, 1987, pp. 523–531 (1989)

    MathSciNet  Google Scholar 

  67. Weinstock, B.M.: Uniform approximations by solutions of elliptic equations. Proc. Am. Math. Soc.41, 513–517 (1973)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this entry

Cite this entry

Martin, M. (2014). Function Spaces in Quaternionic and Clifford Analysis. In: Alpay, D. (eds) Operator Theory. Springer, Basel. https://doi.org/10.1007/978-3-0348-0692-3_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0692-3_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Basel

  • Online ISBN: 978-3-0348-0692-3

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics