Skip to main content

Task Allocation and Motion Planning Strategies for Multi-robot Cooperation

  • Conference paper
  • First Online:
Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future (SOHOMA 2023)

Abstract

The pick-and-place task is a common activity performed by robots in industrial settings. Traditional methods rely on fixed holders to maintain object positions, but this approach lacks flexibility and increases installation complexity and costs. To address this limitation, computer vision-based solutions are proposed to enable more flexible pick-and-place applications. Additionally, employing multiple robots in a shared workspace offers advantages such as increased performance and the ability to achieve complex objectives. However, coordinating and allocating tasks among multiple robots while ensuring collision avoidance remains a challenge. This study focuses on task allocation and motion planning, presenting two strategies: a predictive approach based on simulation optimization and a reactive approach based on control by multi-agent systems. The predictive approach utilises simulation optimization to anticipate collisions and optimizes task allocation, while the reactive approach emphasizes real-time decision-making and coordination among autonomous agents. The paper presents a case study for practical implementation on industrial robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lobbezoo, A., Qian, Y., Kwon, H.-J.: Reinforcement learning for pick and place operations in robotics: a survey. Robotics 10, 105 (2021)

    Article  Google Scholar 

  2. Karami, H., Thomas, A., Mastrogiovanni, F.: Task allocation for multi-robot task and motion planning: a case for object picking in cluttered workspaces. Bandini, S., Gasparini, F., Mascardi, V., Palmonari, M., Vizzari, G. (eds.) AIxIA 2021 – Advances in Artificial Intelligence. AIxIA 2021. LNCS, vol. 13196, pp. 3–17. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08421-8_1

  3. Neville, G., Chernova, S., Ravichandar, H.: D-ITAGS: a dynamic interleaved approach to resilient task allocation, scheduling, and motion planning. IEEE Robot. Autom. Lett. 8, 1037–1044 (2023)

    Article  Google Scholar 

  4. Dantam, N.T., Kingston, Z.K., Chaudhuri, S., Kavraki, L.E.: Incremental task and motion planning: a constraint-based approach. In: Robotics: Science and Systems XII. Robotics: Science and Systems Foundation (2016)

    Google Scholar 

  5. Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V., Uras, T.: Combining high-level causal reasoning with low-level geometric reasoning and motion planning for robotic manipulation. In: 2011 IEEE International Conference on Robotics and Automation, pp. 4575–4581. Shanghai (2011)

    Google Scholar 

  6. Lo, S.-Y., Zhang, S., Stone, P.: PETLON: planning efficiently for task-level-optimal navigation. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, pp. 220–228. Internat. Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2018)

    Google Scholar 

  7. Stilman, M., Kuffner, J.: Planning among movable obstacles with artificial constraints. Int. J. Robot. Res. 27, 1295–1307 (2006)

    Google Scholar 

  8. Thomas, A., Mastrogiovanni, F., Baglietto, M.: Task-Motion Planning for Navigation in Belief Space. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (eds.) Robotics Research. ISRR 2019. Springer Proceedings in Advanced Robotics, vol. 20, pp. 542–558. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95459-8_33

  9. Lagriffoul, F., Dantam, N.T., Garrett, C., Akbari, A., et al.: Platform-independent benchmarks for task and motion planning. IEEE Robot. Autom. Lett. 3, 3765–3772 (2018)

    Article  Google Scholar 

  10. Henkel, C., Abbenseth, J., Toussaint, M.: An optimal algorithm to solve the combined task allocation and path finding problem. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4140–4146 (2019)

    Google Scholar 

  11. Khamis, A., Hussein, A., Elmogy, A.: Multi-robot task allocation: a review of the state-of-the-art. In: Koubâa, A., Martínez-de Dios, J. (eds.) Cooperative Robots and Sensor Networks 2015. Studies in Computational Intelligence, vol. 604, pp. 31–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18299-5_2

  12. Castaman, N., Pagello, E., Menegatti, E., Pretto, A.: receding horizon task and motion planning in changing environments. Robot. Autonom. Syst. 145, 103863 (2021)

    Google Scholar 

  13. Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., Abbeel, P.: Combined task and motion planning through an extensible planner-independent interface layer. In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 639–646. IEEE, Hong Kong, China (2014)

    Google Scholar 

  14. Behrens, J.K., Lange, R., Mansouri, M.: A Constraint programming approach to simultaneous task allocation and motion scheduling for industrial dual-arm manipulation tasks. In: Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), pp. 8705–8711. IEEE, Montreal, QC, Canada (2019)

    Google Scholar 

  15. Behrens, J.K., Stepanova, K., Babuska, R.: Simultaneous task allocation and motion scheduling for complex tasks executed by multiple robots. In: Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 11443–11449. IEEE, Paris, France (2020)

    Google Scholar 

  16. Chen, X., You, X., Jiang, J., Ye, J., Wu, H.: Trajectory planning of dual-robot cooperative assembly. Machines. 10, 689 (2022). https://doi.org/10.3390/machines10080689

    Article  Google Scholar 

  17. Tereshchuk, V., Stewart, J., Bykov, N., Pedigo, S., Devasia, S., Banerjee, A.G.: An efficient scheduling algorithm for multi-robot task allocation in assembling aircraft structures. IEEE Robot. Autom. Lett. 4, 3844–3851 (2019)

    Article  Google Scholar 

  18. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)

    Article  MathSciNet  Google Scholar 

  19. Weiss, G.: Multiagent Systems. 2nd edn. MIT Press, Cambridge (2013)

    Google Scholar 

  20. Joseph, L.: Robot Operating System for Absolute Beginners. Apress, Berkeley (2018)

    Google Scholar 

  21. Sidhik, S.: panda_simulator: Gazebo simulator for Franka Emika Panda robot supporting sim-to-real code transfer (2020)

    Google Scholar 

  22. Panerati, J., Zheng, H., Zhou, S., Xu, J., Prorok, A., Schoellig, A.P.: Learning to fly—a gym environment with PyBullet physics for reinforcement learning of multi-agent quadcopter control. In: Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 7512–7519 (2021)

    Google Scholar 

  23. Erez, T., Tassa, Y., Todorov, E.: Simulation tools for model-based robotics: comparison of bullet, Havok, MuJoCo, ODE and PhysX. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4397–4404 (2015)

    Google Scholar 

  24. Takaya, K., Asai, T., Kroumov, V., Smarandache, F.: Simulation environment for mobile robots testing using ROS and Gazebo. In: 2016 20th International Conference on System Theory, Control and Computing (ICSTCC), pp. 96–101 (2016)

    Google Scholar 

  25. Chitta, S., et al.: Ros_control: a generic and simple control framework for ROS. JOSS. 2, 456 (2017)

    Article  Google Scholar 

  26. Chitta, S.: MoveIt!: An Introduction. In: Koubaa, A. (ed.) Robot Operating System (ROS). SCI, vol. 625, pp. 3–27. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26054-9_1

    Chapter  Google Scholar 

  27. Andersen, T.T.: Optimizing the universal robots ROS driver. Technical University of Denmark, Department of Electrical Engineering (2015)

    Google Scholar 

  28. Arbo, M.H., Eriksen, I., Sanfilippo, F., Gravdahl, J.T.: Comparison of KVP and RSI for controlling KUKA robots over ROS. IFAC-PapersOnLine. 53, 9841–9846 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Cardin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El Ghazi, Y., Subrin, K., Levilly, S., Mouchère, H., Cardin, O. (2024). Task Allocation and Motion Planning Strategies for Multi-robot Cooperation. In: Borangiu, T., Trentesaux, D., Leitão, P., Berrah, L., Jimenez, JF. (eds) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. SOHOMA 2023. Studies in Computational Intelligence, vol 1136. Springer, Cham. https://doi.org/10.1007/978-3-031-53445-4_32

Download citation

Publish with us

Policies and ethics