Skip to main content

Exploring Human-Machine Relations and Approaches for Task Management in Dynamic Environments: A Comprehensive Literature Review

  • Conference paper
  • First Online:
Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future (SOHOMA 2023)

Abstract

The transition to Industry 5.0 highlights the necessity for practical cooperation between humans and machines in challenging situations [22], driven by advanced technology, increased production demands, and decentralized control mechanisms while prioritizing human involvement and control. This paper comprehensively evaluates the literature on diverse human-machine interactions and partnerships. The review analyses technology integration’s advantages, limitations, and crucial role in enhancing human-machine relationships. Additionally, it investigates various approaches to task allocation, planning, and decision-making, considering the influential factors affecting these processes such as task complexity, and human factors. This study identifies research gaps and suggests future research projects to improve relations between humans and machines in dynamic environments. These profound insights not only provide light on a variety of allocation strategies but also emphasize the need to protect human well-being. As a result, they contribute to a better understanding of Industry 4.0’s complex human-machine interaction and play an important role in determining the design of intelligent production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, A., Won, S.J., Sharma, T., Deshpande, M., McComb, C.: A multi-agent reinforcement learning framework for intelligent manufacturing with autonomous mobile robots, vol. 1, pp. 161–170 (2021)

    Google Scholar 

  2. Alhaji, B., et al.: Engineering human–machine teams for trusted collaboration. Big Data Cogn. Comput. 4, 1–30 (2020)

    Google Scholar 

  3. Berdal, Q.: Conception d’un système humain-cyber-physique: apport de la méthode CWA, Ph.D. thesis, University Polytechnique Hauts de France, HAL Id: tel-03851331 (2022)

    Google Scholar 

  4. Boschetti, G., Faccio, M., Granata, I.: Human-centered design for productivity and safety in collaborative robots’ cells: a new methodological approach. Electronics (Switzerland) 12(1), 167 (2023)

    Google Scholar 

  5. Charisi, V., Gomez, E., Mier, G., Merino, L., Gomez, R.: Child-robot collaborative problem solving and the importance of child’s voluntary interaction: a developmental perspective. Front. Robot. AI 7, 15 (2020)

    Google Scholar 

  6. Dahl, M., Bengtsson, K., Falkman, P.: Application of the sequence planner control framework to an intelligent automation system with a focus on error handling. Machines 9(3), 59 (2021)

    Google Scholar 

  7. de Giorgio, A., Lundgren, M., Wang, L.: Procedural knowledge and function blocks for smart process planning, vol. 48, pp. 1079–1087 (2020)

    Google Scholar 

  8. Dolganov, A.G., Letnev, K.Y.: Informative modeling of subjective reality for intellectual anthropomorphic robots, vol. 966 (2020)

    Google Scholar 

  9. Dusadeerungsikul, P.O., Sreeram, M., He, X., Nair, A., Quinn, A.J., Nof, S.: Collaboration requirement planning protocol for hub-ci in factories of the future, vol. 39, pp. 218–225 (2019)

    Google Scholar 

  10. Fast-Berglund, Å., Romero, D., Åkerman, M., Hodig, B., Pichler, A.: Agent-and skill-based process interoperability for socio-technical production systems-of-systems. In: Lalic, B., Majstorovic, V., Marjanovic, U., von Cieminski, G., Romero, D. (eds.) Advances in Production Management Systems. Towards Smart and Digital Manufacturing. APMS 2020. IFIP AICT, vol. 592, pp. 46–54. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57997-5_6

  11. Fusaro, F., Lamon, E., De Momi, E., Ajoudani, A.: A human-aware method to plan complex cooperative and autonomous tasks using behavior trees, vol. 2021-July, pp. 522–529 (2021)

    Google Scholar 

  12. Ruiz Garcia, M.A., Rojas, R., Gualtieri, L., Rauch, E., Matt, D.: A human-in-the-loop cyber-physical system for collaborative assembly in smart manufacturing, vol. 81, pp. 600–605 (2019)

    Google Scholar 

  13. Gorecky, D., Schmitt, M., Loskyll, M., Zühlke, D.: Human-machine interaction in the Industry 4.0 era. In: Industrial Informatics (INDIN) 12th IEEE International Conference (2014)

    Google Scholar 

  14. Guerin, C., Rauffet, P., Chauvin, C., Martin, E.: Toward production operator 4.0: modelling human-machine cooperation in industry 4.0 with cognitive work analysis, vol. 52, pp. 73–78 (2019)

    Google Scholar 

  15. Habib, L.: Niveaux d’automatisation adaptables pour une coopération homme-robots, Ph.D. thesis, University Polytechnique Hauts de France, HAL Id : tel-03156295 (2019)

    Google Scholar 

  16. Hameed, A., Ordys, A., Mozaryn, J., Sibilska-Mroziewicz, A.: Control system design and methods for collaborative robots: review. Appl. Sci. (Switzerland) 13(1), 675 (2023)

    Google Scholar 

  17. Hein-Pensel, F., et al.: Maturity assessment for industry 5.0: a review of existing maturity models. J. Manuf. Syst. 66, 200–210 (2023)

    Google Scholar 

  18. Hoc, J.M.: Towards a cognitive approach to human-machine cooperation in dynamic situations. Int. J. Hum.-Comput. Stud. 54, 509–540 (2001)

    Google Scholar 

  19. Hou, B., Chen, Q., Chen, Z., Nafa, Y., Li, Z.: R-HUMO: a risk-aware human-machine cooperation framework for entity resolution with quality guarantees. IEEE Trans. Knowl. Data Eng. 32, 347–359 (2020)

    Article  Google Scholar 

  20. Ibarguren, A., Daelman, P., Prada, M.: Control strategies for dual arm co-manipulation of flexible objects in industrial environments. Institute of Electrical and Electronics Engineers Inc., pp. 514–519 (2020)

    Google Scholar 

  21. Jhaver, S., Birman, I., Gilbert, E., Bruckman, A.: Human-machine collaboration for content regulation. ACM Trans. Comput.-Hum. Interact. 26, 1–35 (2019)

    Article  Google Scholar 

  22. Cotta, J.: Industry 5.0 towards a sustainable, human-centric, and resilient European industry. European Commission (2021)

    Google Scholar 

  23. Kragic, D., Gustafson, J., Karaoguz, H., Jensfelt, P., Krug, R.: Interactive, collaborative robots: challenges and opportunities. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence Invited Speakers, pp. 18–25 (2018). https://doi.org/10.24963/ijcai.2018/3

  24. Kuts, V., et al.: Digital twin as industrial robots manipulation validation tool. Robotics 11(5), 113 (2022)

    Google Scholar 

  25. Li, C., Chrysostomou, D., Pinto, D., Hansen, A.K., Bøgh, S., Madsen, O.: Hey max, can you help me? An intuitive virtual assistant for industrial robots. Appl. Sci. (Switzerland) 13(1), 205 (2023)

    Google Scholar 

  26. Lins, R.G., Givigi, S.N.: Cooperative robotics and machine learning for smart manufacturing: platform design and trends within the context of industrial internet of things. IEEE Access 9, 95444–95455 (2021)

    Article  Google Scholar 

  27. Lucchese, A., Mummolo, G., Digiesi, S., Mummolo, C.: Agent’s motor performance: an index of the difficulty-based model, vol. 55, pp. 347–352 (2022)

    Google Scholar 

  28. Madonna, M., Monica, L., Anastasi, S., Di Nardo, M.: Evolution of cognitive demand in the human–machine interaction integrated with industry 4.0 technologies. WIT Trans. Built Environ. 189, 13–19 (2019). https://doi.org/10.2495/SAFE190021

  29. El Makrini, I., et al.: Working with Walt: how a cobot was developed and inserted on an auto assembly line. IEEE Robot. Autom. Mag. 25, 51–58 (2018)

    Article  Google Scholar 

  30. Ottogalli, K., Rosquete, D., Rojo, J., Amundarain, A., Rodrıguez, J.M., Borro, D.: Framework for the simulation of an aircraft final assembly line. In: EDP Sciences, vol. 233 (2018)

    Google Scholar 

  31. Pacaux-Lemoine, M.-P., Berdal, Q., Enjalbert, S., Trentesaux, D.: Towards human-based industrial cyber-physical systems. IEEE Ind. Cyber-Phys. Syst. 615–620 (2018)

    Google Scholar 

  32. Pacaux-Lemoine, M.-P., Trentesaux, D.: Human-machine cooperation to design intelligent manufacturing systems. In: Industrial Electronics Conference, pp. 5904–5909 (2016)

    Google Scholar 

  33. Pacaux-Lemoine, M.P., Berdal, Q., Guerin, C., Rauffet, P., Chauvin, C., Trentesaux, D.: Designing human–system cooperation in industry 4.0 with cognitive work analysis: a first evaluation. Cogn. Technol. Work 24, 93–111 (2022)

    Google Scholar 

  34. Pacaux-Lemoine, M.P., Trentesaux, D., Zambrano Rey, G., Millot, P.: Designing intelligent manufacturing systems through human-machine cooperation principles: a human-centered approach. Comput. Ind. Eng. 111, 581–595 (2017)

    Google Scholar 

  35. Pearce, M., Mutlu, B., Shah, J., Radwin, R.: Optimizing makespan and ergonomics in integrating collaborative robots into manufacturing processes. IEEE Trans. Autom. Sci. Eng. 15, 1772–1784 (2018)

    Article  Google Scholar 

  36. Pizzagalli, S.L., Kuts, V., Otto, T.: User-centered design in industrial collaborative automated systems. Proc. Est. Acad. Sci. 70, 436–443 (2021)

    Article  Google Scholar 

  37. Prioli, J.P.J., Rickli, J.L.: Collaborative robot-based architecture to train flexible automated disassembly systems for critical materials, vol. 51, pp. 46–53 (2020)

    Google Scholar 

  38. Ramasubramanian, A.K., Papakostas, N.: Operator - mobile robot collaboration for synchronized part movement. Procedia CIRP 97, 217–223 (2020)

    Article  Google Scholar 

  39. Rojas, R.A., Wehrle, E., Vidoni, R.: A multicriteria motion planning approach for combining smoothness and speed in collaborative assembly systems. Appl. Sci. (Switzerland) 10(15), 5086 (2020)

    Google Scholar 

  40. Rossato, C., Pluchino, P., Cellini, N., Jacucci, G., Spagnolli, A., Gamberini, L.: Facing with collaborative robots: the subjective experience in senior and younger workers. Cyberpsychol. Behav. Soc. Netw. 24, 349–356 (2021)

    Article  Google Scholar 

  41. Saenz, J., Elkmann, N., Gibaru, O., Neto, P.: Survey of methods for the design of collaborative robotics applications- why safety is a barrier to more widespread robotics uptake. Part F137690, pp. 95–101 (2018)

    Google Scholar 

  42. Pahlevan Sharif, S., Mura, P., Wijesinghe, S.: Systematic reviews in Asia: introducing the Prisma protocol to tourism and hospitality scholars. J. Hosp. Tourism Manag. 158–165 (2019)

    Google Scholar 

  43. Simon, L., Guerin, C., Rauffet, P., Lassalle, J.: Using cognitive work analysis to develop predictive maintenance tool for vessels. In: Proceedings of the 31st European Safety and Reliability Conference, pp. 425–432 (2021)

    Google Scholar 

  44. Stefanakos, I., Calinescu, R., Douthwaite, J., Aitken, J., Law, J.: Safety controller synthesis for a mobile manufacturing cobot. In: Schlingloff, B.H., Chai, M. (eds.) Software Engineering and Formal Methods. SEFM 2022. LNCS, vol. 13550, pp. 271–287. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17108-6_17

  45. Tang, G., Webb, P.: The design and evaluation of an ergonomic contactless gesture control system for industrial robots. J. Robot. (2018)

    Google Scholar 

  46. Terziyan, V., Gavriushenko, M., Girka, A., Gontarenko, A., Kaikova, O.: Cloning and training collective intelligence with generative adversarial networks. IET Collab. Intell. Manuf. 3, 64–74 (2021)

    Article  Google Scholar 

  47. Vanderhaegen, F., Wolff, M., Ibarboure, S., Mollard, R.: Heart-computer synchronization interface to control human-machine symbiosis: a new human availability support for cooperative systems. IFAC-PapersOnLine 52, 91–96 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our heartfelt appreciation to the Hestim Research Centre CERIM and Soukaina Sadiki for their invaluable support and encouragement during the course of our research and writing of this article. Their guidance and expertise have been instrumental in shaping our work. We are truly grateful for their contributions and the opportunities they have provided us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sondes Chaabane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nissoul, S., Pacaux-Lemoine, MP., Chaabane, S. (2024). Exploring Human-Machine Relations and Approaches for Task Management in Dynamic Environments: A Comprehensive Literature Review. In: Borangiu, T., Trentesaux, D., Leitão, P., Berrah, L., Jimenez, JF. (eds) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. SOHOMA 2023. Studies in Computational Intelligence, vol 1136. Springer, Cham. https://doi.org/10.1007/978-3-031-53445-4_22

Download citation

Publish with us

Policies and ethics