Skip to main content

Practicing the Engineering Fundamentals in a Project-Based Design and 3D Printing Course

  • Conference paper
  • First Online:
Towards a Hybrid, Flexible and Socially Engaged Higher Education (ICL 2023)

Abstract

As 3D printing technology transforms product design and manufacturing, educational programs must incorporate its principles to prepare engineering students for the workforce. Establishing dedicated labs and integrating 3D printing into higher education curricula has become popular among universities and colleges. However, insufficient attention is paid to using this learning practice to apply knowledge of engineering fundamentals and develop skills for implementing efficient and reliable additive manufacturing processes. Therefore, new approaches are needed to increase the pedagogical value of this learning practice. This study explores the effectiveness of the project-based learning (PBL) approach for enhancing the understanding of mathematical, engineering, and 3D printing concepts and their application by mechanical engineering students. We developed a pilot course, “Engineering and mathematical applications in 3D printing,” for junior and senior-year students. The course included lectures on design for additive manufacturing (DfAM), 3D printing technologies, printability, and troubleshooting, as well as project tasks involving the design and fabrication of functional objects such as asymmetric spinning-tops, Pythagorean cups, and print-in-place mechanisms. In the study, we examined how participants applied their mathematical and engineering knowledge to solve complex design challenges using 3D printing technology, and their perceptions of the learning experience. Using an exploratory research design, data were collected through observations, student works, and post-course questionnaires. The findings indicate that the students successfully completed the project tasks, demonstrating their ability to apply engineering principles and optimize designs for 3D printing. The students highly appreciated the course’s project-oriented format and its contribution to their understanding of 3D printing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cabaleiro-Cerviño, G., Vera, C.: The impact of educational technologies in higher education. GIST – Educ. Learn. Res. J. 20, 151–169 (2020)

    Google Scholar 

  2. Eisazadeh, H., Torabizadeh, M.: Expanding a mechanical engineering technology curriculum to include additive manufacturing. In: 2021 ASEE Virtual Annual Conference (2021)

    Google Scholar 

  3. Ford, S., Minshall, T.: Where and how 3D printing is used in teaching and education. Addit. Manuf. 25, 131–150 (2019)

    Google Scholar 

  4. Machado-Toledo, J., Mora, C.E., Añorbe-Díaz, B., González-Marrero, A., Martín-Gutiérrez, J.: Project-oriented problem-based learning for an entrepreneurial vision in engineering education. In: Zaphiris, P., Ioannou, A. (eds.) Learning and Collaboration Technologies. Learning and Teaching. Lecture Notes in Computer Science, vol. 10925, pp. 483–491. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91152-6_37

    Chapter  Google Scholar 

  5. Levin, L., Verner, I.: Student practice in 3D design and printing for promoting analytical and applied mathematical thinking skills. Int. J. Eng. Pedagogy 11, 39–53 (2021)

    Article  Google Scholar 

  6. Grebski, M., Grebski, W.: Project-based approach to engineering technology education. Prod. Eng. Arch. 25, 56–59 (2019)

    Article  Google Scholar 

  7. Ullah, A.S., Tashi, Kubo, A., Harib, K.H.: Tutorials for integrating 3D printing in engineering curricula. Educ. Sci. 10, 194 (2020)

    Google Scholar 

  8. Go, J., Hart, A.J.: A framework for teaching the fundamentals of additive manufacturing and enabling rapid innovation. Addit. Manuf. 10, 76–87 (2016)

    Google Scholar 

  9. Powar, K.P., Patil, S.D.: Promoting technology-enhanced project-based learning through application of 3D printing technology for mechanical engineering education. J. Eng. Educ. Transform. 35, 292–329 (2022)

    Google Scholar 

  10. Mo, J.P.T., Tang, Y.M.: Project-based learning of systems engineering V model with the support of 3D printing. Australas. J. Eng. Educ. 22, 3–13 (2017)

    Article  Google Scholar 

  11. Cuperman, D., Verner, I.M., Levin, L., Greenholts, M., Rosen, U.: Focusing a technology teacher education course on collaborative cloud-based design with Onshape. In: Auer, M.E., Hortsch, H., Michler, O., Köhler, T. (eds.) Mobility for Smart Cities and Regional Development - Challenges for Higher Education. Lecture Notes in Networks and Systems, vol. 390, pp. 465–477. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93907-6_49

    Chapter  Google Scholar 

  12. Serdar, T.: Educational challenges in design for additive manufacturing. In: ASEE Annual Conference and Exposition. American Society for Engineering Education (2016)

    Google Scholar 

  13. Bächer, M., Whiting, E., Bickel, B., Sorkine-Hornung, O.: Spin-It: optimizing moment of inertia for spinnable objects. ACM Trans. Graph. (TOG) 33, 1–10 (2014)

    Article  Google Scholar 

  14. Akiyama, J., Sato, I., Seong, H.: Tessellabilities, Reversibilities, and Decomposabilities of Polytopes. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information, pp. 215–223. Springer, Berlin Heidelberg, Berlin, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Ponelis, S.R.: Using interpretive qualitative case studies for exploratory research in doctoral studies: a case of information systems research in small and medium enterprises. Int. J. Dr. Stud. 10, 535–550 (2015)

    Google Scholar 

Download references

Acknowledgement

This research was supported by the Technion Additive Manufacturing Center Dissemination Project Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Levin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Levin, L., Verner, I. (2024). Practicing the Engineering Fundamentals in a Project-Based Design and 3D Printing Course. In: Auer, M.E., Cukierman, U.R., Vendrell Vidal, E., Tovar Caro, E. (eds) Towards a Hybrid, Flexible and Socially Engaged Higher Education. ICL 2023. Lecture Notes in Networks and Systems, vol 901. Springer, Cham. https://doi.org/10.1007/978-3-031-53022-7_17

Download citation

Publish with us

Policies and ethics