Skip to main content

Abstract

Background: The ability to promptly sequence whole genomes at a relatively low cost has revolutionized how we study the microbiome. Analyzing whole genome sequencing (WGS) data enables metagenomics at scale. Still, it is a complex process that involves multiple moving parts and can be unintuitive for scientists that do not typically work with this type of data.

Methods: Thus, to help lower the barrier for less computationally inclined individuals, TAXAPRO, a metagenomics pipeline that accurately assembles organelle genomes from WGS, data was developed. TAXAPRO seamlessly combines WGS analysis tools to create a pipeline that automatically processes raw WGS data and presents information on microorganisms’ diversity and relative abundance.

Results: TAXAPRO was evaluated using gut microbiome data from COVID-19 patients. Analysis performed by TAXAPRO demonstrated a relatively high abundance of Clostridia and Bacteroides genera and a low abundance of Proteobacteria were detected in the gut microbiome of patients hospitalized with COVID-19, consistent with the original findings results derived using a different analysis methodology.

Conclusion: Our results provide evidence that the TAXAPRO workflow dispenses quick and automated microorganism diversity and relative abundance information without the hassle of manually performing the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sender, R., Fuchs, S., Milo, R.: Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans. Cell 164(3), 337–340 (2016). https://doi.org/10.1016/j.cell.2016.01.013

    Article  Google Scholar 

  2. Cussotto, S., Sandhu, K.V., Dinan, T.G., Cryan, J.F.: The neuroendocrinology of the microbiota-gut-brain axis: a behavioural perspective. Front. Neuroendocrinol. 51, 80–101 (2018). https://doi.org/10.1016/j.yfrne.2018.04.002

    Article  Google Scholar 

  3. Barrett, E., Ross, R.P., O’Toole, P.W., Fitzgerald, G.F., Stanton, C.: γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113(2), 411–417 (2012). https://doi.org/10.1111/j.1365-2672.2012.05344.x

    Article  Google Scholar 

  4. Yang, N.J., Chiu, I.M.: Bacterial signaling to the nervous system through toxins and metabolites. J. Mol. Biol. 429(5), 587–605 (2017). https://doi.org/10.1016/j.jmb.2016.12.023

    Article  Google Scholar 

  5. David, L.A., Maurice, C.F., Carmody, R.N., et al.: Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484), 559–563 (2014). https://doi.org/10.1038/nature12820

    Article  Google Scholar 

  6. Dethlefsen, L., Huse, S., Sogin, M.L., Relman, D.A.: The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6(11), e280 (2008). https://doi.org/10.1371/journal.pbio.0060280

    Article  Google Scholar 

  7. Gaulke, C.A., Sharpton, T.J.: The influence of ethnicity and geography on human gut microbiome composition. Nat. Med. 24(10), 1495–1496 (2018). https://doi.org/10.1038/s41591-018-0210-8

    Article  Google Scholar 

  8. Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., Gordon, J.I.: An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122), 1027–1031 (2006). https://doi.org/10.1038/nature05414

    Article  Google Scholar 

  9. Cui, L., Zhao, T., Hu, H., Zhang, W., Hua, X.: Association study of gut flora in coronary heart disease through high-throughput sequencing. Biomed. Res. Int. 2017, 3796359 (2017). https://doi.org/10.1155/2017/3796359

    Article  Google Scholar 

  10. Cattaneo, A., Cattane, N., Galluzzi, S., et al.: Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging 49, 60–68 (2017). https://doi.org/10.1016/j.neurobiolaging.2016.08.019

    Article  Google Scholar 

  11. Brooks, E.F., Bhatt, A.S.: The gut microbiome: a missing link in understanding the gastrointestinal manifestations of COVID-19? Cold Spring Harb Mol Case Stud. 7(2), a006031 (2021). https://doi.org/10.1101/mcs.a006031

    Article  Google Scholar 

  12. Hussain, I., Cher, G.L.Y., Abid, M.A., Abid, M.B.: Role of gut microbiome in COVID-19: an insight into pathogenesis and therapeutic potential. Front. Immunol. 12, 765965 (2021). https://doi.org/10.3389/fimmu.2021.765965

    Article  Google Scholar 

  13. Yeoh, Y.K., Zuo, T., Lui, G.C.Y., et al.: Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 70(4), 698–706 (2021). https://doi.org/10.1136/gutjnl-2020-323020

    Article  Google Scholar 

  14. Zuo, T., Zhang, F., Lui, G.C.Y., et al.: Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 159(3), 944-955.e8 (2020). https://doi.org/10.1053/j.gastro.2020.05.048

    Article  Google Scholar 

  15. Gu, S., Chen, Y., Wu, Z., et al.: Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clin. Infect. Dis. 71(10), 2669–2678 (2020). https://doi.org/10.1093/cid/ciaa709

    Article  Google Scholar 

  16. Metzker, M.L.: Sequencing technologies — the next generation. Nat. Rev. Genet. 11(1), 31–46 (2010). https://doi.org/10.1038/nrg2626

    Article  Google Scholar 

  17. Hollister, E.B., Riehle, K., Luna, R.A., et al.: Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome. 3, 36 (2015). https://doi.org/10.1186/s40168-015-0101-x

    Article  Google Scholar 

  18. Pallen, M.J.: Diagnostic metagenomics: potential applications to bacterial, viral and parasitic infections. Parasitology 141(14), 1856–1862 (2014). https://doi.org/10.1017/S0031182014000134

    Article  Google Scholar 

  19. Costalonga, M., Herzberg, M.C.: The oral microbiome and the immunobiology of periodontal disease and caries. Immunol. Lett. 162(2 Pt A), 22–38 (2014). https://doi.org/10.1016/j.imlet.2014.08.017

  20. Li, C.X., You, Z.X., Lin, Y.X., Liu, H.Y., Su, J.: Skin microbiome differences relate to the grade of acne vulgaris. J. Dermatol. 46(9), 787–790 (2019). https://doi.org/10.1111/1346-8138.14952

    Article  Google Scholar 

  21. Greathouse, K.L., White, J.R., Vargas, A.J., et al.: Interaction between the microbiome and TP53 in human lung cancer. Genome Biol. 19(1), 123 (2018). https://doi.org/10.1186/s13059-018-1501-6

    Article  Google Scholar 

  22. Shreiner, A.B., Kao, J.Y., Young, V.B.: The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 31(1), 69–75 (2015). https://doi.org/10.1097/MOG.0000000000000139

    Article  Google Scholar 

  23. Bull, M.J., Plummer, N.T.: Part 1: the human gut microbiome in health and disease. Integr Med (Encinitas). 13(6), 17–22 (2014)

    Google Scholar 

  24. Sehli, S., Allali, I., Chahboune, R., et al.: Metagenomics approaches to investigate the gut microbiome of COVID-19 patients. Bioinform. Biol. Insights 15, 1177932221999428 (2021). https://doi.org/10.1177/1177932221999428

    Article  Google Scholar 

  25. LaMar, D.: FastQC. Published online (2015). https://qubeshub.org/resources/fastqc

  26. Bolger, A.M., Lohse, M., Usadel, B.: Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114–2120 (2014). https://doi.org/10.1093/bioinformatics/btu170

    Article  Google Scholar 

  27. Nurk, S., Meleshko, D., Korobeynikov, A., Pevzner, P.A.: MetaSPAdes: a new versatile metagenomic assembler. Genome Res. 27(5), 824–834 (2017). https://doi.org/10.1101/gr.213959.116

    Article  Google Scholar 

  28. Hyatt, D., Chen, G.L., LoCascio, P.F., Land, M.L., Larimer, F.W., Hauser, L.J.: Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11(1), 119 (2010). https://doi.org/10.1186/1471-2105-11-119

    Article  Google Scholar 

  29. Bankevich, A., Nurk, S., Antipov, D., et al.: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19(5), 455–477 (2012). https://doi.org/10.1089/cmb.2012.0021

    Article  MathSciNet  Google Scholar 

  30. Cock, P.J.A., Antao, T., Chang, J.T., et al.: Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25(11), 1422–1423 (2009). https://doi.org/10.1093/bioinformatics/btp163

    Article  Google Scholar 

  31. McKinney, W.: Data structures for statistical computing in Python. In: Proceedings of the 9th Python in Science Conference. Published Online, pp. 56–61 (2010). https://doi.org/10.25080/Majora-92bf1922-00a

  32. Hunter, J.D.: Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  33. Waskom, M.L.: Seaborn: statistical data visualization. J. Open Sour. Softw. 6(60), 3021 (2021). https://doi.org/10.21105/joss.03021

    Article  Google Scholar 

  34. Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., Madden, T.L.: NCBI BLAST: a better web interface. Nucleic Acids Res. 36(Web Server issue), W5–9 (2008). https://doi.org/10.1093/nar/gkn201

  35. Koutsoumanis, K., Allende, A., Alvarez-Ordóñez, A., et al.: Whole genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of food-borne microorganisms. EFSA J. 17(12), e05898 (2019). https://doi.org/10.2903/j.efsa.2019.5898

    Article  Google Scholar 

  36. Dominguez Del Angel, V., Hjerde, E., Sterck, L., et al.: Ten steps to get started in genome assembly and annotation. F1000Res. 7, ELIXIR-148 (2018). https://doi.org/10.12688/f1000research.13598.1

  37. Zhou, Q., Su, X., Ning, K.: Assessment of quality control approaches for metagenomic data analysis. Sci. Rep. 4(1), 6957 (2014). https://doi.org/10.1038/srep06957

    Article  Google Scholar 

  38. Wang, Y., Li, G., Ma, M., et al.: GT-WGS: an efficient and economic tool for large-scale WGS analyses based on the AWS cloud service. BMC Genomics 19(Suppl 1), 959 (2018). https://doi.org/10.1186/s12864-017-4334-x

    Article  Google Scholar 

  39. Berg, G., Rybakova, D., Fischer, D., et al.: Microbiome definition re-visited: old concepts and new challenges. Microbiome. 8(1), 103 (2020). https://doi.org/10.1186/s40168-020-00875-0

    Article  Google Scholar 

  40. Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K., Knight, R.: Diversity, stability and resilience of the human gut microbiota. Nature 489(7415), 220–230 (2012). https://doi.org/10.1038/nature11550

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported through cloud computational resources provided by the National Institutes of Health Office of Data Science Strategy (NIH ODSS). This research was also supported through computational resources of HPC-MARWAN (www.marwan.ma/hpc) provided by the National Center for Scientific and Technical Research (CNRST), Rabat, Morocco. Hassan Ghazal is a US NIH grant recipient through the H3abionet/H3africa consortium U24HG006941. The authors thank Brigit Shea Sullivan and Alicia Lillich from the NIH Library Editing Service for manuscript editing assistance.

Author information

Authors and Affiliations

Authors

Contributions

SS: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Resources, Software, Supervision; ZEO: Visualization, Investigation, Writing – Original Draft Preparation; CE: Data Curation, Formal Analysis, Methodology, Software, Writing – Original Draft Preparation; AIA: Data Curation, Formal Analysis; KAS: Formal Analysis, Investigation; IEJ: Conceptualization; S. Jbara: Formal Analysis, Methodology; A. Afolayan: Investigation, Resources; OIA: Funding Acquisition, Formal Analysis, Investigation, Project Administration, Resources, Supervision, Review & Editing; A. Dillman: Funding Acquisition, Resources, Supervision; H. Ghazal: Conceptualization, Review & Editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hassan Ghazal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sehli, S. et al. (2024). TAXAPRO: A Streamlined Pipeline to Analyze Shotgun Metagenomes. In: Ezziyyani, M., Kacprzyk, J., Balas, V.E. (eds) International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD’2023). AI2SD 2023. Lecture Notes in Networks and Systems, vol 905. Springer, Cham. https://doi.org/10.1007/978-3-031-52385-4_8

Download citation

Publish with us

Policies and ethics