Skip to main content

Modeling and Numerical Analysis of the Strength of the Osteosynthesis Plate Used to Stabilize Long Bone Fractures

  • Chapter
  • First Online:
Innovations in Biomedical Engineering 2023

Abstract

The global number of all fracture types in 2019 was estimated at 178 million, an increase of 33.4% compared to data from 1990 [19]. Depending on the type and location of the fracture, different methods of internal stabilization are recommended. However, the most commonly used implants for internal stabilization of bone fractures are osteointegrated plates [12]. They offer a number of advantages, such as high stability of plate fixation, restoration of anatomically compatible relationships between fractured bone fragments and the possibility of rapid rehabilitation after plate implantation. Plate designs are constantly being developed due to ongoing advances in the understanding of factors affecting fracture healing. The aim of presented article is to conduct a numerical analysis of the connection of the femur and the osteosynthesis plate used for the internal stabilization of fractures. Two versions of the osteo-synthesis plate were modeled: a conventional Locking Compression Plate (LCP) and a plate with an alternative geometry (spiral curved). Both plates were tested for stresses, deformations and displacements under given boundary conditions simulating the real biomechanical loads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al, F., Tosun, B., Sinmazcelik, T., Ozmen, M.: Biomechanical comparison of medial versus lateral sided plating in femoral fractures. Acta Ortop Bras. 26(4), 265–270 (2018)

    Article  Google Scholar 

  2. Aloudah, A.A., Almesned, F.A., Alkanan, A.A., Alharbi, T.: Pattern of fractures among road traffic accident victims requiring hospitalization: single-institution experience in Saudi Arabia. Cureus. 12(1), e6550 (2020). https://doi.org/10.7759/cureus.6550

    Article  Google Scholar 

  3. An, Y.H., Draughn, R.A.: Mechanical Testing of Bone and the Bone–Implant Interface. CRC Press (1999). ISBN 9781420073560. https://doi.org/10.1201/9781420073560

  4. Arnone, J.C., et al.: Computer-Aided Engineering Approach for Parametric Investigation of Locked Planting Systems Design (2013). https://doi.org/10.1115/1.4024644

  5. Bayraktar, H.H., Morgan, E.F., Niebur, G.L., Morris, G.E., Wong, E.K., Keaveny, T.M.: Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 37, 27–35 (2004). https://doi.org/10.1016/S0021-9290(03)

    Article  Google Scholar 

  6. Erceg, M.: The influence of femoral head shift on hip biomechanics: additional parameters accounted. Int. Orthop. (SICOT) 2009(33), 95–100 (2008). https://doi.org/10.1007/s00264-008-0544-9

    Article  Google Scholar 

  7. Frigg, R.: Locking Compression Plate (LCP). An osteosynthesis plate based on the dynamic compression plate and the point contact fixator (PC-Fix). Injury 32(Suppl 2), 63–66 (2001). https://doi.org/10.1016/s0020-1383(01)00127-9

  8. Hamidi, S., Khosravifard, A., Hematiyan, M.R., Dehghani, J.: A comparative mechanical study of two types of femur bone implant using the finite element method. Int. J. Number Methods Biomed. Eng. 37(6) (2021). https://doi.org/10.1002/cnm.3459

  9. Kim, T., See Carmine, W., Li, X., Zhu, D.: Orthopedic implants and devices for bone fractures and defects: past, present and perspective. Eng. Regeneration 1, 6–18 (2020). ISSN 2666-1381. https://doi.org/10.1016/j.engreg.2020.05.003

  10. Kishore, P., Kumar Dash, A., Kumar, K.D.: Modelling and analysis of femur bone from CT scan. IOP Conf. Ser. Mater. Sci. Eng. (2020). https://doi.org/10.1088/1757-899X/764/1/012003

  11. Li, J., et al.: Materials evolution of bone plates for internal fixation of bone fractures, a review. J. Mater. Sci. Technol. 36, 190–208 (2020). https://doi.org/10.1016/j.jmst.2019.07.024

    Article  Google Scholar 

  12. Lundin, N., Huttunen, T.T., Enocson, A., Marcano, A.I., Felländer-Tsai, L., Berg, H.E.: Epidemiology and mortality of pelvic and femur fractures-a nationwide register study of 417,840 fractures in Sweden across 16 years: diverging trends for potentially lethal fractures. Acta Orthop. 92(3), 323–328 (2021). https://doi.org/10.1080/17453674.2021.18

    Article  Google Scholar 

  13. Meinberg, E.G., Agel, J., Roberts, C.S., Karam, M.D., Kellam, J.F.: Fracture and dislocation classification compendium – 2018. J. Orthop. Trauma 32(1 Supplement), 1–170 (2018). https://doi.org/10.1097/BOT.0000000000001063

    Article  Google Scholar 

  14. Miller, D.L., Goswami, T.: A review of locking compression plate biomechanics and their advantages as internal fixators in fracture healing. Clin. Biomech. (Bristol Avon) 22(10), 1049–1062 (2007). https://doi.org/10.1016/j.clinbiomech.2007.08.004

    Article  Google Scholar 

  15. Das, S., Sarangi, S.K.: Finite Element Analysis of Femur Fracture Fixation Plates. Engineering (2014). Corpus ID: 32269004. ISSN: 2349-5839

    Google Scholar 

  16. Satapathy, K.P., et al.: Finite element analysis of functionally graded bone plate at femur bone fracture site. Conf. Ser. Mater. Sci. Eng. (2018). https://doi.org/10.1088/1757-899X/330/1/012027

  17. Schatzker, J., Tile, M.: The Rationale of Operative Fracture Care, 3rd Edn. Springer, Cham (2005). ISBN-10:3642061648, ISBN-13:978-3642061646. https://doi.org/10.1007/3-540-27708-0

  18. Senthil Maharaj, P.S.R., Maheswaran, R., Vasanthanathan, A.: Numerical analysis of fractured femur bone with prosthetic bone plates. Procedia Eng. 64, 1242–1251 (2013). ISSN 1877-7058. https://doi.org/10.1016/j.proeng.2013.09.204

  19. Ai-Min, W., et al.: Global regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Healt. Long. 2(9) (2021). https://doi.org/10.1016/S2666-7568(21)00172-0

  20. Catalog Curved Locking Compression Plates (LPC®), DePuySynthes the orthopaedics company from Johnson & Johnson (2021)

    Google Scholar 

  21. Website. https://surgeryreference.aofoundation.org/orthopedic-trauma/pediatric-trauma/femoral-shaft/32-d-41/mipo#plate-selection. Accessed 10 June 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Rychlik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Młody, AM., Piecha, J., Rychlik, M. (2024). Modeling and Numerical Analysis of the Strength of the Osteosynthesis Plate Used to Stabilize Long Bone Fractures. In: Gzik, M., Paszenda, Z., Piętka, E., Tkacz, E., Milewski, K., Jurkojć, J. (eds) Innovations in Biomedical Engineering 2023. Lecture Notes in Networks and Systems, vol 875. Springer, Cham. https://doi.org/10.1007/978-3-031-52382-3_16

Download citation

Publish with us

Policies and ethics