Skip to main content

Continuous Action Recognition in Manufacturing Contexts by Deep Graph Convolutional Networks

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 825))

Included in the following conference series:

  • 301 Accesses

Abstract

Human action recognition is an active topic of research in computer vision and machine learning. Its application in the industrial domain is even more challenging since workers can handle multiple objects and follow different assembly sequences, and only a few datasets are target-oriented. However, the availability of low-cost cameras capable of extracting high-level information about human posture and movement opens up new possibilities. This work compares four state-of-the-art graph neural networks working with skeletal data to recognize the actions in the HA4M dataset, where subjects perform an assembly task. Videos are divided into clips of consecutive frames that form the input skeletal graphs of the networks. Then, an algorithm for action segmentation is proposed to assess each action’s exact starting and ending instants. Results show that the best performance is achieved by a two-stream Adaptive Graph Convolutional Network trained with input clips 77 frames long.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Amin, M., Qin, R., Moniruzzaman, M., Yin, Z., Tao, W., Leu, M.C.: An individualized system of skeletal data-based CNN classifiers for action recognition in manufacturing assembly. J. Intell. Manuf. (2021)

    Google Scholar 

  2. Berg, J., Reckordt, T., Richter, C., Reinhart, G.: Action recognition in assembly for human-robot-cooperation using hidden Markov models. Procedia CIRP 76, 205–210 (2018). In: 7th CIRP Conference on Assembly Technologies and Systems

    Google Scholar 

  3. Chen, C., Wang, T., Li, D., Hong, J.: Repetitive assembly action recognition based on object detection and pose estimation. J. Manuf. Syst. 55, 325–333 (2020)

    Article  Google Scholar 

  4. Cicirelli, G., D’Orazio, T.: A low-cost video-based system for neurodegenerative disease detection by mobility test analysis. Appl. Sci. 13(1), 278 (2022)

    Article  Google Scholar 

  5. Cicirelli, G., Marani, R., Romeo, L., Domínguez, M.G., Heras, J., Perri, A.G., D’Orazio, T.: The HA4M dataset: multi-modal monitoring of an assembly task for human action recognition in manufacturing. Sci. Data 9(1), 745 (2022)

    Google Scholar 

  6. Duan, H., Wang, J., Chen, K., Lin, D.: PYSKL: Towards Good Practices for Skeleton Action Recognition (2022)

    Google Scholar 

  7. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetic dataset. In: Proceedinfs of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  8. Jegham, I., Khalifa, A.B., Alouani, I., Mahjoub, M.A.: Vision-based human action recognition: an overview and real world challenges. Forensic Sci. Int.: Digit. Investig. 32, 1–17 (2020)

    Google Scholar 

  9. Kobayashi, T., Aoki, Y., Shimizu, S., Kusano, K., Okumura, S.: Fine-grained action recognition in assembly work scenes by drawing attention to the hands. In: 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 440–446 (2019)

    Google Scholar 

  10. Kong, Y., Fu, Y.: Human action recognition and prediction: a survey. Int. J. Comput. Vis. 130, 1366–1401 (2022)

    Article  Google Scholar 

  11. Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L., Kot, A.C.: NTU RGB+D: a large scale dataset for 3D human activity analysis. IEEE Trans. Pattern Anal. Mach. Intell. 42, 2684–2701 (2020)

    Article  Google Scholar 

  12. Liu, Z., Zhang, H., Chen, Z., Wang, Z., Ouyang, W.: Disentangling and unifying graph convolutions for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 143–152 (2020)

    Google Scholar 

  13. Mahbub , U., Ahad, M.A.R.: Advances in human action, activity and gesture recognition. Pattern Recognit. Lett. (2021)

    Google Scholar 

  14. Feng, M., Meunier, J.: Skeleton graph-neural-network-based human action recognition: a survey. Sensors 22 (2022)

    Google Scholar 

  15. Microsoft: Azure Kinect DK Documentation (2021). https://docs.microsoft.com/en-us/azure/kinect-dk/. Accessed March 2022

  16. Özyer, T., Ak, D.S., Alhajj, R.: Human action recognition approaches with video datasets - a survey. Knowl.-Based Syst. 222, 1–36 (2021)

    Article  Google Scholar 

  17. Romeo, L., Marani, R., Cicirelli, G., D’Orazio, T.: Video based mobility monitoring of elderly people using deep learning models. IEEE Access 11, 2804–2819 (2023)

    Google Scholar 

  18. Romeo, L., Marani, R., Malosio, M., Perri, A.G., D’Orazio, T.: Performance analysis of body tracking with the Microsoft Azure Kinect. In: 2021 29th Mediterranean Conference on Control and Automation (MED), pp. 572–577. IEEE (2021)

    Google Scholar 

  19. Sarkar, A., Banerjee, A., Singh, P.K., Sarkar, R.: 3D human action recognition: through the eyes of researchers. Expert Syst. Appl. 193, 116424 (2022)

    Article  Google Scholar 

  20. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+D: a large scale dataset for 3D human activity analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1010–1019 (2016)

    Google Scholar 

  21. Shi, L., Zhang, Y., Lu, H.: Skeleton-based action recognition with multi-stream adaptive graph convolutional networks. IEEE Trans. Image Process. 29, 9532–9545 (2020)

    Article  Google Scholar 

  22. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12018–12027 (2019)

    Google Scholar 

  23. Tao, W., Al-Amin, M., Chen, H., Leu, M.C., Yin, Z., Qin, R.: Real-time assembly operation recognition with fog computing and transfer learning for human-centered intelligent manufacturing. Procedia Manuf. 48, 926–931 (2020)

    Article  Google Scholar 

  24. Wang, L., Gao, R., Vancza, J., Krüger, J., Wang, X.V., Makris, S.: Symbiotic human-robot collaborative assembly. CIRP Ann. Manuf. Technol. 68, 701–726 (2019)

    Article  Google Scholar 

  25. Wang, Z., Qin, R., Yan, J., Guo, C.: Vision sensor based action recognition for improving efficiency and quality under the environment of Industry 4.0. Procedia CRP 80, 711–176 (2019). In: 26th CIRP Life Cycle Engineering (LCE) Conference

    Google Scholar 

  26. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. Comput. Res. Repos. (CoRR) (2018)

    Google Scholar 

  27. Chen, Y., Zhang, Z., Yuan, C., Deng, Y., Hu, W.: Channel-wise topology refinement graph convolution for skeleton-based action recognition. In: Proceeding of IEEE/CVF International Conference on Computer Vision, pages 13359–13368 (2021)

    Google Scholar 

  28. Zamora-Hernandez, M.A., Castro-Vergas, J.A., Azorin-Lopez, J., Garcia-Rodriguez, J.: Deep learning-based visual control assistant for assembly in Industry 4.0. Comput. Ind. 131, 1–15 (2021)

    Google Scholar 

  29. Zhang, J., Wang, P., Gao, R.X.: Hybrid machine learning for human action recognition and prediction in assembly. Robot. Comput. Integr. Manuf. 72, 1–10 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Marani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maselli, M.V., Marani, R., Cicirelli, G., D’Orazio, T. (2024). Continuous Action Recognition in Manufacturing Contexts by Deep Graph Convolutional Networks. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 825. Springer, Cham. https://doi.org/10.1007/978-3-031-47718-8_11

Download citation

Publish with us

Policies and ethics