Skip to main content

Towards Applications of Machine Learning Algorithms for Sustainable Systems and Precision Agriculture

  • Chapter
  • First Online:
Data Analytics for Smart Grids Applications—A Key to Smart City Development

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 247))

Abstract

Agriculture plays an indispensable role in each country, serving as a major driving force for economic development. It holds the responsibility for producing the majority of the world’s sustenance for the increasing world population, which is expected to reach 9.8 billion by 2050. With the expected population growing substantially, and the lack of precise knowledge from farmers regarding climactic factors, irrigation demand, soil types, yield, market demand, pesticide use, and livestock needs, the farming process is under scrutiny to produce efficient solutions. The recent advances in Machine Learning (ML) have witnessed an extensive number of applications in agriculture to address the issues. ML falls under the category of Artificial Intelligence (AI) where statistical models enable programmable machines to automatically learn from a dataset. This paper surveys various ML algorithms applicable across sub-domains in agriculture, namely, crop management, water management, soil management, and livestock management. This paper discusses the various problems associated with adopting traditional methods such as soil sampling, laboratory analysis, etc. In addition, the ML algorithms proposed by other authors for forecasting or detection are discussed in detail. At last, the future directions for the application of ML in agriculture are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shaikh, T. A., Mir, W. A., Rasool, T., Sofi, S.: Machine learning for smart agriculture and precision farming: towards making the fields talk. Arch. Comput. Methods Eng. 29, 4557–4597 (2022). https://doi.org/10.1007/s11831-022-09761-4

  2. Wani, J.A., Sharma, S., Muzamil, M., Ahmed, S., Sharma, S., Singh, S.: Machine learning and deep learning based computational techniques in automatic agricultural diseases detection: methodologies, applications, and challenges. Arch. Comput. Methods Eng. 29, 641–677. https://doi.org/10.1007/s11831-021-09588-5

  3. Benos, L., Tagarakis, A.C., Dolias, G., Berruto, R., Kateris, D., Bochtis, D.: Machine learning in agriculture: a comprehensive updated review. Sensors 21(11), 3758 (2021). https://doi.org/10.3390/s21113758

    Article  Google Scholar 

  4. Kansal, N., Bhushan, B., Sharma, S.: Architecture, security vulnerabilities, and the proposed countermeasures in agriculture-internet-of-things (AIoT) systems. In: Pattnaik, P.K., Kumar, R., Pal, S. (eds) Internet of Things and Analytics for Agriculture, Volume 3. Studies in Big Data, vol 99. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-6210-2_16

  5. Bahalul Haque, A.K.M., Bhushan B., Nawar A., Talha K.R., Ayesha S.J.: Attacks and countermeasures in IoT based smart healthcare applications. In: Balas, V.E., Solanki, V.K., Kumar, R. (eds.) Recent Advances in Internet of Things and Machine Learning. Intelligent Systems Reference Library, vol. 215. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-90119-6_6

  6. Sethy, P.K., Barpanda, N.K., Rath, A.K., Behera, S.K.: Deep feature based rice leaf disease identification using support vector machine. Comput. Electron. Agric. 175, 105527 (2020). https://doi.org/10.1016/j.compag.2020.105527

    Article  Google Scholar 

  7. Hong, T., Wang, Z., Luo, X., Zhang, W.: State-of-the-art on research and applications of machine learning in the building life cycle. Energy Build. 212, 109831 (2020). https://doi.org/10.1016/j.enbuild.2020.109831

    Article  Google Scholar 

  8. Kumar, A., Bhushan, B., Nand, P.: Preventing and Detecting Intrusion of Cyberattacks in Smart Grid by Integrating Blockchain. In: Sharma, D.K., Peng, SL., Sharma, R., Zaitsev, D.A. (eds.) Micro-Electronics and Telecommunication Engineering. Lecture Notes in Networks and Systems, vol. 373. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-8721-1_12

  9. Souri, A., Ghafour, M.Y., Ahmed, A.M., Safara, F., Yamini, A., Hoseyninezhad, M.: A new machine learning-based healthcare monitoring model for student’s condition diagnosis in Internet of Things environment. Soft. Comput. 24(22), 17111–17121 (2020). https://doi.org/10.1007/s00500-020-05003-6

    Article  Google Scholar 

  10. Pour Rahimian, F., Seyedzadeh, S., Oliver, S., Rodriguez, S., Dawood, N.: On-demand monitoring of construction projects through a game-like hybrid application of BIM and machine learning. Autom. Constr. 110, 103012 (2020). https://doi.org/10.1016/j.autcon.2019.103012

    Article  Google Scholar 

  11. Zhang, S., Xie, X., Xu, Y.: A brute-force black-box method to attack machine learning-based systems in cybersecurity. IEEE Access 8, 128250–128263 (2020). https://doi.org/10.1109/ACCESS.2020.3008433

    Article  Google Scholar 

  12. Gao, J., Nuyttens, D., Lootens, P., He, Y., Pieters, J.G.: Recognising weeds in a maize crop using a random forest machine-learning algorithm and near-infrared snapshot mosaic hyperspectral imagery. Biosys. Eng. 170, 39–50 (2018). https://doi.org/10.1016/j.biosystemseng.2018.03.006

    Article  Google Scholar 

  13. Schwalbert, R.A., Amado, T., Corassa, G., Pott, L.P., Prasad, P., Ciampitti, I.A.: Satellite-based soybean yield forecast: integrating machine learning and weather data for improving crop yield prediction in southern Brazil. Agric. For. Meteorol. 284, 107886 (2020). https://doi.org/10.1016/j.agrformet.2019.107886

    Article  Google Scholar 

  14. Yamaç, S.S., Todorovic, M.: Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data. Agric. Water Manag. 228, 105875 (2020). https://doi.org/10.1016/j.agwat.2019.105875

    Article  Google Scholar 

  15. Taneja, M., Byabazaire, J., Jalodia, N., Davy, A., Olariu, C., Malone, P.: Machine learning based fog computing assisted data-driven approach for early lameness detection in dairy cattle. Comput. Electron. Agric. 171, 105286 (2020). https://doi.org/10.1016/j.compag.2020.105286

    Article  Google Scholar 

  16. Mahmoudzadeh, H., Matinfar, H.R., Taghizadeh-Mehrjardi, R., Kerry, R.: Spatial prediction of soil organic carbon using machine learning techniques in western Iran. Geoderma Reg. 21, e00260 (2020). https://doi.org/10.1016/j.geodrs.2020.e00260

    Article  Google Scholar 

  17. Singh, R., Singh, A., Bhattacharya, P.: A machine learning approach for anomaly detection to secure smart grid systems. In: Research Anthology on Smart Grid and Microgrid Development, pp. 911–923. IGI global (2022)

    Google Scholar 

  18. Bhattacharya, P., Patel, F., Alabdulatif, A., Gupta, R., Tanwar, S., Kumar, N., Sharma, R.: A deep-Q learning scheme for secure spectrum allocation and resource management in 6G environment. IEEE Trans. Netw. Serv. Manage. (2022)

    Google Scholar 

  19. Sarker, I.H.: Machine learning: algorithms, real-world applications and research directions. In: SN Computer Science, vol. 2, Issue 3. Springer (2021). https://doi.org/10.1007/s42979-021-00592-x

  20. Puri, D., & Bhushan, B.: Enhancement of security and energy efficiency in WSNs: machine learning to the rescue. In: 2019 International Conference on Computing, Communication, a1nd Intelligent Systems (ICCCIS) (2019). https://doi.org/10.1109/icccis48478.2019.8974465

  21. Soni, S., Bhushan, B.: Use of machine learning algorithms for designing efficient cyber security solutions. In: 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT) (2019). https://doi.org/10.1109/icicict46008.2019.8993253

  22. Gaur, J., Goel, A.K., Rose, A., Bhushan, B.: Emerging trends in machine learning. In: 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT) (2019). https://doi.org/10.1109/icicict46008.2019.8993192

  23. Xie, Y., Li, Y., Xia, Z., Yan, R.: An improved forward regression variable selection algorithm for high-dimensional linear regression models. IEEE Access 8, 129032–129042 (2020). https://doi.org/10.1109/ACCESS.2020.3009377

    Article  Google Scholar 

  24. Singh, R.V., Bhushan, B., Tyagi, A.: Deep learning framework for cybersecurity: Framework, applications, and future research trends. Adv. Intell. Syst. Comput. 837–847 (2021). https://doi.org/10.1007/978-981-33-4367-2_80

  25. López, G., Arboleya, P.: Short-term wind speed forecasting over complex terrain using linear regression models and multivariable LSTM and NARX networks in the Andes Mountains, Ecuador. Renew. Energy 183, 351–368 (2022). https://doi.org/10.1016/j.renene.2021.10.070

    Article  Google Scholar 

  26. Poongodi, M., Sharma, A., Vijayakumar, V., Bhardwaj, V., Sharma, A.P., Iqbal, R., Kumar, R.: Prediction of the price of Ethereum blockchain cryptocurrency in an industrial finance system. Comput. Electr. Eng. 81, 106527 (2020). https://doi.org/10.1016/j.compeleceng.2019.106527

  27. Zhang, H., Gao, P., Yu, J., Lin, J., Xiong, N.N.: Machine learning on cloud with blockchain: a secure, verifiable and fair approach to outsource the linear regression. IEEE Trans. Netw. Sci. Eng. 9(6), 3956–3967 (2022). https://doi.org/10.1109/TNSE.2021.3110101

    Article  MathSciNet  Google Scholar 

  28. Gambella, C., Ghaddar, B., Naoum-Sawaya, J.: Optimization problems for machine learning: a survey. Eur. J. Oper. Res. 290(3), 807–828 (2021). https://doi.org/10.1016/j.ejor.2020.08.045

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, J., de Hoogh, K., Gulliver, J., Hoffmann, B., Hertel, O., Ketzel, M., Bauwelinck, M., van Donkelaar, A., Hvidtfeldt, U.A., Katsouyanni, K., Janssen, N.A., Martin, R.V., Samoli, E., Schwartz, P.E., Stafoggia, M., Bellander, T., Strak, M., Wolf, K., Vienneau, D., Hoek, G.: A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide. Environ. Int. 130, 104934 (2019). https://doi.org/10.1016/j.envint.2019.104934

    Article  Google Scholar 

  30. Osarogiagbon, A.U., Khan, F., Venkatesan, R., Gillard, P.: Review and analysis of supervised machine learning algorithms for hazardous events in drilling operations. Process. Saf. Environ. Prot. 147, 367–384 (2021). https://doi.org/10.1016/j.psep.2020.09.038

    Article  Google Scholar 

  31. Deng, S., Wei, M., Xu, M., et al.: Prediction of the rate of penetration using logistic regression algorithm of machine learning model. Arab. J. Geosci. 14, 2230 (2021). https://doi.org/10.1007/s12517-021-08452-x

    Article  Google Scholar 

  32. Balaji, T.K., Annavarapu, C.S.R., Bablani, A.: Machine learning algorithms for social media analysis: a survey. Comput. Sci. Rev. 40, 100395 (2021). https://doi.org/10.1016/j.cosrev.2021.100395

  33. Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., Lopez, A.: A comprehensive survey on support vector machine classification: applications, challenges and trends. Neurocomputing 408, 189–215 (2020). https://doi.org/10.1016/j.neucom.2019.10.118

    Article  Google Scholar 

  34. Kumar, P., Hati, A.S.: Review on machine learning algorithm based fault detection in induction motors. Arch. Comput. Methods Eng. 28(3), 1929–1940 (2021). https://doi.org/10.1007/s11831-020-09446-w

    Article  Google Scholar 

  35. Lee, L.H., Wan, C.H., Rajkumar, R., Isa, D.: An enhanced support vector machine classification framework by using Euclidean distance function for text document categorization. Appl. Intell. 37(1), 80–99 (2012). https://doi.org/10.1007/s10489-011-0314-z

    Article  Google Scholar 

  36. Canete-Sifuentes, L., Monroy, R., Medina-Perez, M.A.: A review and experimental comparison of multivariate decision trees. IEEE Access 9, 110451–110479 (2021). https://doi.org/10.1109/ACCESS.2021.3102239

    Article  Google Scholar 

  37. Bansal, M., Goyal, A., Choudhary, A.: A comparative analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning. Decis. Anal. J. 3, 100071 (2022). https://doi.org/10.1016/j.dajour.2022.100071

    Article  Google Scholar 

  38. Geetha, R., Thilagam, T.: A review on the effectiveness of machine learning and deep learning algorithms for cyber security. Arch. Comput. Methods Eng. 28(4), 2861–2879 (2021). https://doi.org/10.1007/s11831-020-09478-2

    Article  MathSciNet  Google Scholar 

  39. Wang, J., Biljecki, F.: Unsupervised machine learning in urban studies: a systematic review of applications. Cities 129, 103925 (2022). https://doi.org/10.1016/j.cities.2022.103925

    Article  Google Scholar 

  40. Ezugwu, A.E., Ikotun, A.M., Oyelade, O.O., Abualigah, L., Agushaka, J.O., Eke, C.I., Akinyelu, A.A.: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng. Appl. Artif. Intell. 110, 104743 (2022). https://doi.org/10.1016/j.engappai.2022.104743

    Article  Google Scholar 

  41. Priyadarshini, I., Alkhayyat, A., Obaid, A.J., Sharma, R.: Water pollution reduction for sustainable urban development using machine learning techniques. Cities 130, 103970 (2022). ISSN 0264-2751. https://doi.org/10.1016/j.cities.2022.103970

  42. Pandya, S., Gadekallu, T.R., Maddikunta, P.K.R., Sharma, R.: A study of the impacts of air pollution on the agricultural community and yield crops (Indian Context). Sustainability 14, 13098 (2022). https://doi.org/10.3390/su142013098

    Article  Google Scholar 

  43. Bhola, B., Kumar, R., Rani, P., Sharma, R., Mohammed, M.A., Yadav, K., Alotaibi, S.D., Alkwai, L.M.: Quality-enabled decentralized dynamic IoT platform with scalable resources integration. IET Commun. 00, 1–10 (2022). https://doi.org/10.1049/cmu2.12514

    Article  Google Scholar 

  44. Deepanshi, I.B., Garg, D., Kumar, N., Sharma, R.: A comprehensive review on variants of SARS-CoVs-2: challenges, solutions and open issues. Comput. Commun. (2022). ISSN 0140-3664. https://doi.org/10.1016/j.comcom.2022.10.013

  45. Ahasan Habib, A.K.M., Hasan, M.K., Islam, S., Sharma, R., Hassan, R., Nafi, N., Yadav, K., Alotaibi, S.D.: Energy-efficient system and charge balancing topology for electric vehicle application. Sustain. Energy Technol. Assess. 53, 102516 (2022). ISSN 2213-1388. https://doi.org/10.1016/j.seta.2022.102516

  46. Rani, P., Sharma, R.: Intelligent transportation system for internet of vehicles based vehicular networks for smart cities. Comput. Electr. Eng. 105, 108543 (2023). ISSN 0045-7906. https://doi.org/10.1016/j.compeleceng.2022.108543

  47. Sharma, R., Rawat, D.B., Nayak, A., Peng, S.-L., Xin, Q.: Introduction to the special section on survivability analysis of wireless networks with performance evaluation (VSI–networks survivability). Comput. Netw. 220, 109498 (2023). ISSN 1389-1286. https://doi.org/10.1016/j.comnet.2022.109498

  48. Ghildiyal, Y., Singh, R., Alkhayyat, A., Gehlot, A., Malik, P., Sharma, R., Akram, S.V., Alkwai, L.M.: An imperative role of 6G communication with perspective of industry 4.0: challenges and research directions. Sustain. Energy Technol. Assess. 56, 103047 (2023). ISSN 2213-1388. https://doi.org/10.1016/j.seta.2023.103047

  49. Ahasan Habib, A.K.M., Hasan, M.K., Alkhayyat, A., Islam, S., Sharma, R., Alkwai, L.M.: False data injection attack in smart grid cyber physical system: issues, challenges, and future direction. Comput. Electr. Eng. 107, 108638 (2023). ISSN 0045-7906. https://doi.org/10.1016/j.compeleceng.2023.108638

  50. Priyadarshini, I., Kumar, R., Alkhayyat, A., Sharma, R., Yadav, K., Alkwai, L.M., Kumar, S.: Survivability of industrial internet of things using machine learning and smart contracts. Comput. Electr. Eng. 107, 108617 (2023). ISSN 0045-7906. https://doi.org/10.1016/j.compeleceng.2023.108617

  51. Priyadarshini, I., Mohanty, P., Alkhayyat, A., Sharma, R., Kumar, S.: SDN and application layer DDoS attacks detection in IoT devices by attention-based Bi-LSTM-CNN. Trans. Emerg. Tel. Tech. e4758 (2023). https://doi.org/10.1002/ett.4758

  52. Sharma, R., Arya, R.: Secured mobile IOT ecosystem using enhanced multi-level intelligent trust scheme. Comput. Electr. Eng. 108, 108715 (2023). ISSN 0045-7906. https://doi.org/10.1016/j.compeleceng.2023.108715

  53. Deng, H., Hu, J., Sharma, R., Mo, M., Ren, Y.: NVAS: a non-interactive verifiable federated learning aggregation scheme for COVID-19 based on game theory. Comput. Commun. (2023). ISSN 0140-3664. https://doi.org/10.1016/j.comcom.2023.04.026

  54. Sharma, A., Rani, S., Shah, S.H., Sharma, R., Yu, F., Hassan, M.M.: An efficient hybrid deep learning model for denial of service detection in cyber physical systems. In: IEEE Trans. Netw. Sci. Eng. https://doi.org/10.1109/TNSE.2023.3273301

  55. Gupta, U., Sharma, R.: Analysis of criminal spatial events in India using exploratory data analysis and regression. Comput. Electr. Eng. 109, 108761 (2023). ISSN 0045-7906. https://doi.org/10.1016/j.compeleceng.2023.108761

  56. Varshney, M., Bhushan, B., Haque, A.K.M.B.: Big data analytics and data mining for healthcare informatics (HCI). In: Kumar, R., Sharma, R., Pattnaik, P.K. (eds.) Multimedia Technologies in the Internet of Things Environment, vol. 3. Studies in Big Data, vol. 108. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-0924-5_11

  57. Iskandaryan, D., Ramos, F., Trilles, S.: Air quality prediction in smart cities using machine learning technologies based on sensor data: a review. Appl. Sci. 10(7), 2401 (2020). https://doi.org/10.3390/app10072401

    Article  Google Scholar 

  58. Aithal, P.K., Geetha, M., Dinesh Acharya, U., Savitha, B., Menon, P.: Real-time portfolio management system utilizing machine learning techniques. IEEE Access (2023). https://doi.org/10.1109/ACCESS.2023.3263260

    Article  Google Scholar 

  59. Morariu, C., Morariu, O., Răileanu, S., Borangiu, T.: Machine learning for predictive scheduling and resource allocation in large scale manufacturing systems. Comput. Ind. 120, 103244 (2020). https://doi.org/10.1016/j.compind.2020.103244

    Article  Google Scholar 

  60. Min, Q., Lu, Y., Liu, Z., Su, C., Wang, B.: Machine learning based digital twin framework for production optimization in petrochemical industry. Int. J. Inf. Manage. 49, 502–519 (2019). https://doi.org/10.1016/j.ijinfomgt.2019.05.020

    Article  Google Scholar 

  61. Virnodkar, S.S., Pachghare, V.K., Patil, V.C., Jha, S.K.: Remote sensing and machine learning for crop water stress determination in various crops: a critical review. In: Precision Agriculture, vol. 21, Issue 5, pp. 1121–1155. Springer (2020). https://doi.org/10.1007/s11119-020-09711-9

  62. Yvoz, S., Petit, S., Biju-Duval, L., Cordeau, S.: A framework to type crop management strategies within a production situation to improve the comprehension of weed communities. Eur. J. Agron. 115, 126009 (2020). https://doi.org/10.1016/j.eja.2020.126009

    Article  Google Scholar 

  63. Van Klompenburg, T., Kassahun, A., Catal, C.: Crop yield prediction using machine learning: a systematic literature review. Comput. Electron. Agric. 177, 105709 (2020). https://doi.org/10.1016/j.compag.2020.105709

    Article  Google Scholar 

  64. Anagnostis, A., Tagarakis, A., Asiminari, G., Papageorgiou, E., Kateris, D., Moshou, D., Bochtis, D.: A deep learning approach for anthracnose infected trees classification in walnut orchards. Comput. Electron. Agric. 182, 105998 (2021). https://doi.org/10.1016/j.compag.2021.105998

    Article  Google Scholar 

  65. Zhang, S., Huang, W., Huang, Y., Zhang, C.: Plant species recognition methods using leaf image: overview. Neurocomputing 408, 246–272 (2020). https://doi.org/10.1016/j.neucom.2019.09.113

    Article  Google Scholar 

  66. Salina, A.B., Hassan, L., Saharee, A.A., Jajere, S.M., Stevenson, M.A., Ghazali, K.: Assessment of knowledge, attitude, and practice on livestock traceability among cattle farmers and cattle traders in peninsular Malaysia and its impact on disease control. Trop. Anim. Health Prod. 53(1) (2021). https://doi.org/10.1007/s11250-020-02458-5

  67. Goap, A., Sharma, D., Shukla, A., Rama Krishna, C.: An IoT based smart irrigation management system using machine learning and open source technologies. Comput. Electron. Agric. 155, 41–49 (2018). https://doi.org/10.1016/j.compag.2018.09.040

    Article  Google Scholar 

  68. Cai, Y., Guan, K., Peng, J., Wang, S., Seifert, C., Wardlow, B., Li, Z.: A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens. Environ. 210, 35–47 (2018). https://doi.org/10.1016/j.rse.2018.02.045

    Article  Google Scholar 

  69. Bakhshipour, A., Jafari, A.: Evaluation of support vector machine and artificial neural networks in weed detection using shape features. Comput. Electron. Agric. 145, 153–160 (2018). https://doi.org/10.1016/j.compag.2017.12.032

    Article  Google Scholar 

  70. Ren, A., Zahid, A., Zoha, A., Shah, S.A., Imran, M.A., Alomainy, A., Abbasi, Q.H.: Machine learning driven approach towards the quality assessment of fresh fruits using non-invasive sensing. IEEE Sens. J. 20(4), 2075–2083 (2019). https://doi.org/10.1109/JSEN.2019.2949528

    Article  Google Scholar 

  71. Maya Gopal, P., Bhargavi, R.: A novel approach for efficient crop yield prediction. Comput. Electron. Agric. 165, 104968 (2019). https://doi.org/10.1016/j.compag.2019.104968

    Article  Google Scholar 

  72. Chen, D., Chang, N., Xiao, J., Zhou, Q., Wu, W.: Mapping dynamics of soil organic matter in croplands with MODIS data and machine learning algorithms. Sci. Total. Environ. 669, 844–855 (2019). https://doi.org/10.1016/j.scitotenv.2019.03.151

    Article  Google Scholar 

  73. Rahmati, O., Falah, F., Dayal, K.S., Deo, R.C., Mohammadi, F., Biggs, T., Moghaddam, D.D., Naghibi, S.A., Bui, D.T.: Machine learning approaches for spatial modeling of agricultural droughts in the south-east region of Queensland Australia. Sci. Total. Environ. 699, 134230 (2020). https://doi.org/10.1016/j.scitotenv.2019.134230

    Article  Google Scholar 

  74. Kumar, M., Kumar, A., Palaparthy, V.S.: Soil sensors-based prediction system for plant diseases using exploratory data analysis and machine learning. IEEE Sens. J. 21(16), 17455–17468 (2021). https://doi.org/10.1109/JSEN.2020.3046295

    Article  Google Scholar 

  75. El Bilali, A., Taleb, A.: Prediction of irrigation water quality parameters using machine learning models in a semi-arid environment. J. Saudi Soc. Agric. Sci. 19(7), 439–451 (2020). https://doi.org/10.1016/j.jssas.2020.08.001

    Article  Google Scholar 

  76. Riaboff, L., Poggi, S., Madouasse, A., Couvreur, S., Aubin, S., Bédère, N., Goumand, E., Chauvin, A., Plantier, G.: Development of a methodological framework for a robust prediction of the main behaviours of dairy cows using a combination of machine learning algorithms on accelerometer data. Comput. Electron. Agric. 169, 105179 (2020). https://doi.org/10.1016/j.compag.2019.105179

    Article  Google Scholar 

  77. Marques Ramos, A.P., Prado Osco, L., Elis Garcia Furuya, D., Nunes Gonçalves, W., Cordeiro Santana, D., Pereira Ribeiro Teodoro, L., Antonio da Silva Junior, C., Fernando Capristo-Silva, G., Li, J., Henrique Rojo Baio, F., Marcato Junior, J., Eduardo Teodoro, P., Pistori, H.: A random forest ranking approach to predict yield in maize with UAV-based vegetation spectral indices. Comput. Electron. Agric. 178, 105791 (2020). https://doi.org/10.1016/j.compag.2020.105791

  78. Kasinathan, T., Singaraju, D., Uyyala, S.R.: Insect classification and detection in field crops using modern machine learning techniques. Inform. Process. Agric. 8(3), 446–457 (2021). https://doi.org/10.1016/j.inpa.2020.09.006

    Article  Google Scholar 

  79. Shrivastava, V.K., Pradhan, M.K.: Rice plant disease classification using color features: a machine learning paradigm. J. Plant Pathol. 103(1), 17–26 (2021). https://doi.org/10.1007/s42161-020-00683-3

    Article  Google Scholar 

  80. Sujatha, R., Chatterjee, J.M., Jhanjhi, N., Brohi, S.N.: Performance of deep learning vs machine learning in plant leaf disease detection. Microprocess. Microsyst. 80, 103615 (2021). https://doi.org/10.1016/j.micpro.2020.103615

    Article  Google Scholar 

  81. Yan, S., Yao, X., Zhu, D., Liu, D., Zhang, L., Yu, G., Gao, B., Yang, J., Yun, W.: Large-scale crop mapping from multi-source optical satellite imageries using machine learning with discrete grids. Int. J. Appl. Earth Obs. Geoinf. 103, 102485 (2021). https://doi.org/10.1016/j.jag.2021.102485

    Article  Google Scholar 

  82. Viana, C.M., Santos, M., Freire, D., Abrantes, P., Rocha, J.: Evaluation of the factors explaining the use of agricultural land: a machine learning and model-agnostic approach. Ecol. Ind. 131, 108200 (2021). https://doi.org/10.1016/j.ecolind.2021.108200

    Article  Google Scholar 

  83. Chen, M., Cui, Y., Wang, X., Xie, H., Liu, F., Luo, T., Zheng, S., Luo, Y.: A reinforcement learning approach to irrigation decision-making for rice using weather forecasts. Agric. Water Manag. 250, 106838 (2021). https://doi.org/10.1016/j.agwat.2021.106838

    Article  Google Scholar 

  84. Harakannanavar, S.S., Rudagi, J.M., Puranikmath, V.I., Siddiqua, A., Pramodhini, R.: Plant leaf disease detection using computer vision and machine learning algorithms. Glob. Transitions Proc. 3(1), 305–310 (2022). https://doi.org/10.1016/j.gltp.2022.03.016

    Article  Google Scholar 

  85. Hudait, M., Patel, P.P.: Crop-type mapping and acreage estimation in smallholding plots using Sentinel-2 images and machine learning algorithms: some comparisons. Egypt. J. Remote Sens. Space Sci. 25(1), 147–156 (2022). https://doi.org/10.1016/j.ejrs.2022.01.004

    Article  Google Scholar 

  86. Fei, S., Hassan, M.A., Xiao, Y., Su, X., Chen, Z., Cheng, Q., Duan, F., Chen, R., Ma, Y.: UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat. Precision Agric. 24(1), 187–212 (2022). https://doi.org/10.1007/s11119-022-09938-8

    Article  Google Scholar 

  87. Durai, S.K.S., Shamili, M.D.: Smart farming using machine learning and deep learning techniques. Decis. Anal. J. 3, 100041 (2022). https://doi.org/10.1016/j.dajour.2022.100041

    Article  Google Scholar 

  88. Ji, B., Banhazi, T., Phillips, C.J., Wang, C., Li, B.: A machine learning framework to predict the next month’s daily milk yield, milk composition and milking frequency for cows in a robotic dairy farm. Biosys. Eng. 216, 186–197 (2022). https://doi.org/10.1016/j.biosystemseng.2022.02.013

    Article  Google Scholar 

  89. Aworka, R., Cedric, L.S., Adoni, W.Y.H., Zoueu, J.T., Mutombo, F.K., Kimpolo, C.L.M., Nahhal, T., Krichen, M.: Agricultural decision system based on advanced machine learning models for yield prediction: case of East African countries. Smart Agric. Technol. 2, 100048 (2022). https://doi.org/10.1016/j.atech.2022.100048

    Article  Google Scholar 

  90. Kafy, A.A., Bakshi, A., Saha, M., Faisal, A.A., Almulhim, A.I., Rahaman, Z.A., Mohammad, P.: Assessment and prediction of index based agricultural drought vulnerability using machine learning algorithms. Sci. Total. Environ. 867, 161394 (2023). https://doi.org/10.1016/j.scitotenv.2023.161394

    Article  Google Scholar 

  91. Yogesh, Dubey, A. K., Rocha, A.: A non-invasive approach for calcium deficiency detection in pears using machine learning. Neural Comput. Appl. (2023). https://doi.org/10.1007/s00521-023-08444-w

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Juyal, A., Bhushan, B., Hameed, A.A. (2023). Towards Applications of Machine Learning Algorithms for Sustainable Systems and Precision Agriculture. In: Kumar Sharma, D., Sharma, R., Jeon, G., Kumar, R. (eds) Data Analytics for Smart Grids Applications—A Key to Smart City Development. Intelligent Systems Reference Library, vol 247. Springer, Cham. https://doi.org/10.1007/978-3-031-46092-0_18

Download citation

Publish with us

Policies and ethics