Skip to main content

Modeling and Design of a Bilaterally Statically Balanced Passive Exoskeleton

  • Conference paper
  • First Online:
Advances in Mechanism and Machine Science (IFToMM WC 2023)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 147))

Included in the following conference series:

  • 604 Accesses

Abstract

When a person suffers from a loss of muscle mass, basic movements of his limbs can be harmed. This loss is called muscle atrophy and can exist in different degrees. In irreversible situations, exoskeletons are an option to bring back the ability to execute these lost movements. This work presents the design and modeling of a 3 DOF bilaterally static balanced exoskeleton for the upper limbs. The main feature of the mechanism lies in the passive switching between two springs in the elbow joint. Thus, the agonist/antagonist relationship is preserved and the workspace reached by the upper limb becomes larger if compared to the existing passive cable-driven exoskeletons. For the development of this work, gravity compensation techniques associated with Davies’ Method and virtual chains were used to obtain the equilibrium equations of the mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cazangi, H., Martins, D.: Kinematic analysis of automotive gearbox mechanisms using Davies’ method. In: Proceedings 19th International Congress of Mechanical Engineering-COBEM (2007)

    Google Scholar 

  2. Davies, T.H.: Mechanical networks-III wrenches on circuit screws. Mech. Mach. Theory 18, 107–112 (1983)

    Google Scholar 

  3. Simas, H., Guenther, R., da Cruz, D.F.M., Martins, D.: A new method to solve robot inverse kinematics using Assur virtual chains. Robotica 27, 1017–1026. https://doi.org/10.1017/S0263574709005426

  4. Campos, A., Guenther, R., Martins, D.: Differential kinematics of serial manipulators using virtual chains. J. Brazilian Soc. Mech. Sci. Eng. 27(4), 345–356 (2005)

    Google Scholar 

  5. Gosselin, C.: Gravity compensation, static balancing and dynamic balancing of parallel mechanisms. In: Smart Devices and Machines for Advanced Manufacturing pp. 27–48. Springer (2008). https://doi.org/10.1007/978-1-84800-147-3_2

  6. Herder, J.L.: Energy-Free Systems. Theory, Conception and Design of Statically, vol. 2. Delft University of Technology (2001)

    Google Scholar 

  7. Arakelian, V.: Gravity compensation in robotics. Adv. Robot. 30(2), 79–96 (2016)

    Google Scholar 

  8. Gallego Sanchez, J.: Statically Balanced Compliant Mechanisms: Theory and Synthesis. Technische Universiteit Delft (2013). https://doi.org/10.13140/2.1.3093.2163

  9. Ball, J.W., Dains, J.E., Flynn, J.A., Solomon, B.S., Stewart, R.W.: Seidel’s Guide to Physical Examination-E-Book. Elsevier Health Sciences (2014)

    Google Scholar 

  10. Jackman, R.W., Kandarian, S.C.: The molecular basis of skeletal muscle atrophy. Am. J. Physiol.-Cell Physiol. 287, C834–C843 (2004)

    Google Scholar 

  11. McKinnell, I.W., Rudnicki, M.A.: Molecular mechanisms of muscle atrophy. Cell 119(7), 907–910 (2004)

    Google Scholar 

  12. Glass, D.J.: Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat. Cell Biol. 5(2), 87–90

    Google Scholar 

  13. Martins, D., Murai, E.H.: Mecanismos: síntese e análise com aplicações em robótica. Edufsc, Florianópolis (2019). 9788532808462

    Google Scholar 

  14. Mejia, L., Simas, H., Martins, D.: Wrench capability in redundant planar parallel manipulators with net degree of constraint equal to four, five or six. Mech. Mach. Theory 105, 58–79 (2016)

    Google Scholar 

  15. Deepak, S.R., Ananthasuresh, G.K.: Perfect static balance of linkages by addition of springs but not auxiliary bodies. JMR 4(2) (2012)

    Google Scholar 

  16. Kuo, C.H., Nguyen, V.L., Robertson, D., Chou, L.T., Herder, J.L.: Statically balancing a reconfigurable mechanism by using one passive energy element only: a case study. J. Mech. Robot. 13(4) (2021)

    Google Scholar 

  17. Carricato, M., Gosselin, C.: A statically balanced Gough/Stewart-type platform: conception, design, and simulation. J. Mech. Robot. 1(3) (2009)

    Google Scholar 

  18. Tseng, T.Y., Lin, Y.J., Hsu, W.C., Lin, L.F., Kuo, C.H.: A novel reconfigurable gravity balancer for lower-limb rehabilitation with switchable hip/knee-only exercise. J. Mech. Robot. 9(4) (2017)

    Google Scholar 

  19. Perry, J.C., Rosen, J., Burns, S.: Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatronics 12(4), 408–417 (2007)

    Google Scholar 

  20. Vazzoler, G., Bilancia, P., Berselli, G., Fontana, M., Frisoli, A.: Preliminary analysis and design of a passive upper limb exoskeleton. In: 2021 20th International Conference on Advanced Robotics (ICAR), pp. 569–574. IEEE (2021)

    Google Scholar 

  21. Zoss, A.B., Kazerooni, H., Chu, A.: Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans. Mechatronics 11(2), 128–138 (2006)

    Google Scholar 

  22. Nef, T., Guidali, M., Riener, R.: ARMin III-arm therapy exoskeleton with an ergonomic shoulder actuation. Appl. Bionics Biomech. 6(2), 127–142 (2009)

    Google Scholar 

  23. Jeong, D.H., Choo, J., Jeong, S., Chu, G.: Attaching sub-links on linear actuators of wearable robots for payload increase. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1296–1301. IEEE (2014)

    Google Scholar 

  24. Gómez, M.M.: Prediction of work-related musculoskeletal discomfort in the meat processing industry using statistical models. Int. J. Ind. Ergon. 75(2), 102876 (2020)

    Google Scholar 

  25. Gijbels, D., Lamers, I., Kerkhofs, L., Alders, G., Knippenberg, E., Feys, P.: The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis. J. Neuroeng. Rehab. 8, 1–8 (2011)

    Google Scholar 

  26. Hsieh, H.C., Lan, C.C.: A lightweight gravity-balanced exoskeleton for home rehabilitation of upper limbs. In: 2014 IEEE International Conference on Automation Science and Engineering (CASE), pp. 972–977. IEEE (2014)

    Google Scholar 

  27. Hsieh, H.C., Chien, L., Lan, C.C.: Mechanical design of a gravity-balancing wearable exoskeleton for the motion enhancement of human upper limb. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4992–4997 (2015)

    Google Scholar 

  28. Victorette, A.W.D.B., et al.: Síntese e análise de um mecanismo estaticamente equilibrado para aplicação em exoesqueletos, pp. 42–55 (2022)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil, and CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esdras S. da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Victorette, A.W.D.B., Simas, H., de Souza Vieira, R., da Silva, E.S., Martins, D. (2023). Modeling and Design of a Bilaterally Statically Balanced Passive Exoskeleton. In: Okada, M. (eds) Advances in Mechanism and Machine Science. IFToMM WC 2023. Mechanisms and Machine Science, vol 147. Springer, Cham. https://doi.org/10.1007/978-3-031-45705-0_74

Download citation

Publish with us

Policies and ethics