Skip to main content

An Optimized Combination of Spectral and Spatial Features for Hyperspectral Images Classification via Arithmetic Optimization Algorithm

  • Chapter
  • First Online:
Metaheuristics and Optimization in Computer and Electrical Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1077))

  • 130 Accesses

Abstract

In hyperspectral images, spectral data can be combined with spatial details such as shape and texture for improved classification. Using a probabilistic platform, this paper proposes an approach for merging spatial (texture and shape) and spectral characteristics. Features of shape are extracted by MPs and fFeatures of texture are extracted by Gabor filters. The support vector machine (SVM) can classify these features separately, allowing an estimation of the probabilities for each pixel. To weigh integrations of these probabilities, the Developed Arithmetic Optimization Algorithm (AOA) has been developed. There are three parameters a, b, c that define how the features are effected in proposed integration. AOA calculates these parameters' optimal values. Pavia University, Indian Pines, and Salinas datasets are utilized to assess the proposed scheme. Classifying hyperspectral images using the proposed integration has been demonstrated to be effective, particularly with few labeled samples. Furthermore, comparing this method to some previously studied semi supervised classification approaches, it is more accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goswami A, Sharma D, Mathuku H, Gangadharan SMP, Yadav CS, Sahu SK, Pradhan MK, Singh J, Imran H (2022) Change detection in remote sensing image data comparing algebraic and machine learning methods. Electronics 11(3):431

    Article  Google Scholar 

  2. Kianisarkaleh A, Ghassemian H (2016) Nonparametric feature extraction for classification of hyperspectral images with limited training samples. ISPRS J Photogramm Remote Sens 119:64–78

    Article  Google Scholar 

  3. Jia X, Kuo BC, Crawford MM (2013) Feature mining for hyperspectral image classification. Proc IEEE 101(3):676–697

    Article  Google Scholar 

  4. Benediktsson JA, Ghamisi P (2015) Spectral-spatial classification of hyperspectral remote sensing images. Artech House.

    Google Scholar 

  5. Lu T, Li S, Fang L, Bruzzone L, Benediktsson JA (2016) Set-to-set distance-based spectral–spatial classification of hyperspectral images. IEEE Trans Geosci Remote Sens 54(12):7122–7134

    Article  Google Scholar 

  6. Tarabalka Y, Benediktsson JA, Chanussot J (2009) Spectral–spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans Geosci Remote Sens 47(8):2973–2987

    Article  Google Scholar 

  7. Golipour M, Ghassemian H, Mirzapour F (2015) Integrating hierarchical segmentation maps with MRF prior for classification of hyperspectral images in a Bayesian framework. IEEE Trans Geosci Remote Sens 54(2):805–816

    Article  Google Scholar 

  8. Shi C, Wang L (2014) Incorporating spatial information in spectral unmixing: a review. Remote Sens Environ 149:70–87

    Article  Google Scholar 

  9. Swain PH, Vardeman SB, Tilton JC (1981) Contextual classification of multispectral image data. Pattern Recogn 13(6):429–441

    Article  Google Scholar 

  10. Fauvel M, Tarabalka Y, Benediktsson JA, Chanussot J, Tilton JC (2012) Advances in spectral-spatial classification of hyperspectral images. Proc IEEE 101(3):652–675

    Article  Google Scholar 

  11. Fatemighomi HS, Golalizadeh M, Amani M (2022) Object-based hyperspectral image classification using a new latent block model based on hidden Markov random fields. Pattern Anal Appl 25(2):467–481

    Article  Google Scholar 

  12. Zehtabian A, Ghassemian H (2015) An adaptive pixon extraction technique for multispectral/hyperspectral image classification. IEEE Geosci Remote Sens Lett 12(4):831–835

    Article  Google Scholar 

  13. Zhao W, Du S (2016) Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans Geosci Remote Sens 54(8):4544–4554

    Article  Google Scholar 

  14. Seifi Majdar R, Ghassemian H (2017) Spectral-Spatial classification of hyperspectral images using functional data analysis. Remote Sensing Letters 8(5):488–497

    Article  Google Scholar 

  15. Yu S, Jia S, Xu C (2017) Convolutional neural networks for hyperspectral image classification. Neurocomputing 219:88–98

    Article  Google Scholar 

  16. Zhang M, Ghamisi P, Li W (2017) Classification of hyperspectral and LiDAR data using extinction profiles with feature fusion. Remote Sensing Letters 8(10):957–966

    Article  Google Scholar 

  17. Ruiz LA, Fdez-Sarría A, Recio JA (2004) Texture feature extraction for classification of remote sensing data using wavelet decomposition: a comparative study. In: 20th ISPRS Congress (Vol. 35, No. part B, pp. 1109–1114).

    Google Scholar 

  18. Bunge HJ (2013) Texture analysis in materials science: mathematical methods. Elsevier

    Google Scholar 

  19. Licciardi G, Marpu PR, Chanussot J, Benediktsson JA (2011) Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles. IEEE Geosci Remote Sens Lett 9(3):447–451

    Article  Google Scholar 

  20. Yue J, Zhao W, Mao S, Liu H (2015) Spectral–spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sensing Letters 6(6):468–477

    Article  Google Scholar 

  21. Jia S, Zhuang J, Deng L, Zhu J, Xu M, Zhou J, Jia X (2019) 3-D Gaussian-Gabor feature extraction and selection for hyperspectral imagery classification. IEEE Trans Geosci Remote Sens 57(11):8813–8826

    Article  Google Scholar 

  22. Zhao X, Tao R, Li W, Li HC, Du Q, Liao W, Philips W (2020) Joint classification of hyperspectral and LiDAR data using hierarchical random walk and deep CNN architecture. IEEE Trans Geosci Remote Sens 58(10):7355–7370

    Article  Google Scholar 

  23. Zhang M, Li W, Du Q, Gao L, Zhang B (2018) Feature extraction for classification of hyperspectral and LiDAR data using patch-to-patch CNN. IEEE Trans Cybernet 50(1):100–111

    Article  Google Scholar 

  24. Mirzapour F, Ghassemian H (2015) Improving hyperspectral image classification by combining spectral, texture, and shape features. Int J Remote Sens 36(4):1070–1096

    Article  Google Scholar 

  25. Tong F, Tong H, Jiang J, Zhang Y (2017) Multiscale union regions adaptive sparse representation for hyperspectral image classification. Remote Sens 9(9):872

    Article  Google Scholar 

  26. Seifi Majdar R, Ghassemian H (2017) A probabilistic SVM approach for hyperspectral image classification using spectral and texture features. Int J Remote Sens 38(15):4265–4284

    Article  Google Scholar 

  27. Kaveh A, Hamedani KB (2022) Improved arithmetic optimization algorithm and its application to discrete structural optimization. Structures 35:748–764

    Article  Google Scholar 

  28. Zhang L, Zhang L, Tao D, Huang X (2011) On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans Geosci Remote Sens 50(3):879–893

    Article  Google Scholar 

  29. Vizilter YV, Pyt’ev YP, Chulichkov AI, Mestetskiy LM (2015) Morphological image analysis for computer vision applications. In: Favorskaya MN, Jain LC (eds) Computer vision in control systems-1. Springer International Publishing, Cham, pp 9–58. https://doi.org/10.1007/978-3-319-10653-3_2

    Chapter  Google Scholar 

  30. law Krzysko M (2004) Probability estimates for multi-class classification by pairwise coupling

    Google Scholar 

  31. Soltani-Farani A, Rabiee HR, Hosseini SA (2014) Spatial-aware dictionary learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 53(1):527–541

    Article  Google Scholar 

  32. Plaza A, Martinez P, Perez R, Plaza J (2004) A new approach to mixed pixel classification of hyperspectral imagery based on extended morphological profiles. Pattern Recogn 37(6):1097–1116

    Article  Google Scholar 

  33. Kang X, Li S, Benediktsson JA (2013) Spectral–spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans Geosci Remote Sens 52(5):2666–2677

    Article  Google Scholar 

  34. Li J, Marpu PR, Plaza A, Bioucas-Dias JM, Benediktsson JA (2013) Generalized composite kernel framework for hyperspectral image classification. IEEE Trans Geosci Remote Sens 51(9):4816–4829

    Article  Google Scholar 

  35. Li J, Huang X, Gamba P, Bioucas-Dias JM, Zhang L, Benediktsson JA, Plaza A (2015) Multiple feature learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 53(3):1592–1606

    Article  Google Scholar 

  36. Chen Y, Nasrabadi NM, Tran TD (2011) Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans Geosci Remote Sens 49(10):3973–3985

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Seifi Majdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majdar, R.S. (2023). An Optimized Combination of Spectral and Spatial Features for Hyperspectral Images Classification via Arithmetic Optimization Algorithm. In: Razmjooy, N., Ghadimi, N., Rajinikanth, V. (eds) Metaheuristics and Optimization in Computer and Electrical Engineering. Lecture Notes in Electrical Engineering, vol 1077. Springer, Cham. https://doi.org/10.1007/978-3-031-42685-8_12

Download citation

Publish with us

Policies and ethics