Skip to main content

Reactive Fungal Wearable

  • Chapter
  • First Online:
Fungal Machines

Abstract

Smart wearables sense and process information from the user’s body and environment and report results of their analysis as electrical signals. Conventional electronic sensors and controllers are commonly, sometimes augmented by recent advances in soft electronics. Organic electronics and bioelectronics, especially with living substrates, offer a great opportunity to incorporate parallel sensing and information processing capabilities of natural systems into future and emerging wearables. Nowadays fungi are emerging as a promising candidate to produce sustainable textiles to be used as ecofriendly biowearables. To assess the sensing potential of fungal wearables we undertook laboratory experiments on electrical response of a hemp fabric colonised by oyster fungi Pleurotus ostreatus to mechanical stretching and stimulation with attractants and repellents. We have shown that it is possible to discern a nature of stimuli from the fungi electrical responses. The results paved a way towards future design of intelligent sensing patches to be used in reactive fungal wearables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stoppa, M., Chiolerio, A.: Wearable electronics and smart textiles: a critical review. Sensors 14, 11957–11992 (2014)

    Article  Google Scholar 

  2. Langereis, G.R., Bouwstra, S., Chen, W.: Sensors, actuators and computing architecture systems for smart textiles. In: Smart Textiles for Protection, 7th ed. Woodhead Publishing (2012)

    Google Scholar 

  3. Custodio, V., Herrera, F.J., López, G., Moreno, J.I.: A review on architectures and communications technologies for wearable health-monitoring systems. Sensors 12, 13907–13946 (2012)

    Article  Google Scholar 

  4. Coosemans, J., Hermans, B., Puers, R.: Integrating wireless ECG monitoring in textiles. Sens. Actuators A: Phys. 130, 48–53 (2003)

    Google Scholar 

  5. Scalisi, R.G., Paleari, M., Favetto, A., Stoppa, M., Ariano, P., Pandolfi, P., Chiolerio, A.: Inkjet printed flexible electrodes for surface electromyography. Org. Electron. 18, 89–94 (2015)

    Article  Google Scholar 

  6. Löfhede, J., Martinez, S.F., Thordstein, M.: Soft textile electrodes for EEG monitoring. In: Proceedings of 2010 the 10th IEEE International Conference on Information Technology and Applications in Biomedicine (ITAB), pp. 1–4. IEEE (2010)

    Google Scholar 

  7. Sibinski, M., Jakubowska, M., Sloma, M.: Flexible temperature sensors on fibers. Sensors 10, 7934–7946 (2010)

    Article  Google Scholar 

  8. Omenetto, F., Kaplan, D., Amsden, J., Dal Negro, L.: Silk Based Biophotonic Sensors (2013)

    Google Scholar 

  9. Meyer, J., Lukowicz, P., Tröster, G.: Textile pressure sensor for muscle activity and motion detection. In: Proceeding of the 10th IEEE International Symposium on Wearable Computers, pp. 11–14. IEEE (2006)

    Google Scholar 

  10. Coyle, S., Lau, K.-T., Moyna, N., O’Gorman, D., Diamond, D., Di Francesco, F., Costanzo, D., Salvo, P., Trivella, M.G., De Rossi, D.E.: Flexible temperature sensors on fibers. IEEE Trans. Inf. Technol. Biomed. 14, 364–370 (2010)

    Article  Google Scholar 

  11. Zadeh, E.: Flexible biochemical sensor array for laboratory-on-chip applications. In: Proceeding of the International Workshop on Computer Architecture for Machine Perception and Sensing, pp. 65–66, (2006)

    Google Scholar 

  12. Vatansever, D., Siores, E., Hadimani, R., Shah, T.: Smart Woven Fabrics in Renewable Energy Generation. InTech (2011)

    Google Scholar 

  13. Baurley, S.: Interactive and experiential design in smart textile products and applications. Pers. Ubiquitous Comput. 8, 274–281 (2004)

    Article  Google Scholar 

  14. Black, S.: Trends in smart medical textiles. In: Smart Textiles for Medicine and Healthcare: Materials, Systems and Applications. University of Ghent (2007)

    Google Scholar 

  15. Rajan, K., Garofalo, E., Chiolerio, A.: Wearable intrinsically soft, stretchable, flexible devices for memories and computing. Sensors 18(2), 367 (2018)

    Article  Google Scholar 

  16. Mazzolai, B.: Plant-inspired growing robots. In: Soft Robotics: Trends, Applications and Challenges, pp. 57–63. Springer (2017)

    Google Scholar 

  17. Sadeghi, A., Mondini, A., Mazzolai, B.: Toward self-growing soft robots inspired by plant roots and based on additive manufacturing technologies. Soft Robot. 4(3), 211–223 (2017)

    Article  Google Scholar 

  18. Del Dottore, E., Sadeghi, A., Mondini, A., Mattoli, V., Mazzolai, B.: Toward growing robots: a historical evolution from cellular to plant-inspired robotics. Front. Robot. AI 5, 16 (2018)

    Article  Google Scholar 

  19. Sadeghi, A., Del Dottore, E., Mondini, A., Mazzolai, B.: Passive morphological adaptation for obstacle avoidance in a self-growing robot produced by additive manufacturing. Soft Robot. 7(1), 85–94 (2020)

    Article  Google Scholar 

  20. Schubert, T., Markert, M., Dreßler, M., Adamatzky, A.: Bodymetries. mapping the human body through amorphous intelligence. In: Experiencing the Unconventional: Science in Art, pp. 315–327. World Scientific (2015)

    Google Scholar 

  21. Whiting, J.G.H., de Lacy Costello, B.P.J., Adamatzky, A.: Towards slime mould chemical sensor: mapping chemical inputs onto electrical potential dynamics of Physarum Polycephalum. Sens. Actuators B: Chem. 191:844–853 (2014)

    Google Scholar 

  22. Adamatzky, A.: Slime mould tactile sensor. Sens. Actuators B: Chem. 188, 38–44 (2013)

    Article  Google Scholar 

  23. Adamatzky, A.: Towards slime mould colour sensor: recognition of colours by Physarum polycephalum. Org. Electron. 14(12), 3355–3361 (2013)

    Article  Google Scholar 

  24. Travaglini, S., Dharan, C.K.H., Ross, P.: Manufacturing of mycology composites. In: Proceedings of the American Society for Composites: Thirty-First Technical Conference (2016)

    Google Scholar 

  25. Haneef, M., Ceseracciu, L., Canale, C., Bayer, I.S., Heredia-Guerrero, J.A., Athanassiou, A.: Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci. Rep. 7(1), 1–11 (2017)

    Google Scholar 

  26. Ross, P.: Method for producing fungus structures, Apr. 2018. US Patent 9,951,307

    Google Scholar 

  27. Appels, F.V.W., Camere, S., Montalti, M., Karana, E., Jansen, K.M.B., Dijksterhuis, J., Krijgsheld, P., Wösten, H.A.B.: Fabrication factors influencing mechanical, moisture-and water-related properties of mycelium-based composites. Mater. Des. 161, 64–71 (2019)

    Google Scholar 

  28. Islam, M.R., Tudryn, G., Bucinell, R., Schadler, L., Picu, R.C.: Morphology and mechanics of fungal mycelium. Sci. Rep. 7(1), 1–12 (2017)

    Article  Google Scholar 

  29. Dahmen, J.: Soft futures: mushrooms and regenerative design. J. Archit. Edu. 71(1), 57–64 (2017)

    Google Scholar 

  30. Adamatzky, A., Ayres, P., Belotti, G., Wösten, H.: Fungal architecture position paper. Int. J. Unconv. Comput. 14 (2019)

    Google Scholar 

  31. Chase, J., Ross, P., Wenner, N., Morris, W.: Fungal composites comprising mycelium and an embedded material, Dec. 2019. US Patent App. 16/453,791

    Google Scholar 

  32. Meyer, V., Basenko, E.Y., Benz, J.P., Braus, G.H., Caddick, M.X., Csukai, M., de Vries, R.P., Endy, D., Frisvad, J.C., Gunde-Cimerman, N. et al.: Growing a circular economy with fungal biotechnology: a white paper. Fungal Biol. Biotechnol. 7, 1–23 (2020)

    Google Scholar 

  33. Jones, M., Gandia, A., John, S., Bismarck, A.: Leather-like Material Biofabrication using Fungi, Sept. 2020

    Google Scholar 

  34. Bahn, Y.-S., Xue, C., Idnurm, A., Rutherford, J.C., Heitman, J., Cardenas, M.E.: Sensing the environment: lessons from fungi. Nat. Rev. Microbiol. 5(1), 57 (2007)

    Google Scholar 

  35. Van Aarle, I.M., Olsson, P.A., Söderström, B.: Arbuscular mycorrhizal fungi respond to the substrate ph of their extraradical mycelium by altered growth and root colonization. New Phytol. 155(1), 173–182 (2002)

    Google Scholar 

  36. Kung, C.: A possible unifying principle for mechanosensation. Nature 436(7051), 647 (2005)

    Article  Google Scholar 

  37. Fomina, M., Ritz, K., Gadd, G.M.: Negative fungal chemotropism to toxic metals. FEMS Microbiol. Lett. 193(2), 207–211 (2000)

    Google Scholar 

  38. Bahn, Y.-S., Mühlschlegel, F.A.: Co\(_{2}\) sensing in fungi and beyond. Curr. Opin. Microbiol. 9(6), 572–578 (2006)

    Google Scholar 

  39. Howitz, K.T., Sinclair, D.A.: Xenohormesis: sensing the chemical cues of other species. Cell 133(3), 387–391 (2008)

    Google Scholar 

  40. Olsson, S., Hansson, B.S.: Action potential-like activity found in fungal mycelia is sensitive to stimulation. Naturwissenschaften 82(1), 30–31 (1995)

    Article  Google Scholar 

  41. Adamatzky, A.: On spiking behaviour of oyster fungi pleurotus djamor. Sci. Rep. 8(1), 1–7 (2018)

    Article  MathSciNet  Google Scholar 

  42. Adamatzky, A., Gandia, A., Chiolerio, A.: Fungal sensing skin (2020). arXiv:2008.09814

  43. Beasley, A.E., Powell, A.L., Adamatzky, A.: Fungal photosensors (2020). arXiv:2003.07825

  44. Adamatzky, A., Tegelaar, M., Wosten, H.A.B., Powell, A.L., Beasley, A.E., Mayne, R.: On boolean gates in fungal colony. Biosystems 193, 104138 (2020)

    Google Scholar 

  45. Dehshibi, M.M., Adamatzky, A.: Supplementary material for “Electrical activity of fungi: spikes detection and complexity analysis”, Aug. 2020. https://doi.org/10.5281/zenodo.3997031. Accessed 24 Aug. 2020

  46. Tuteja, N., Mahajan, S.: Calcium signaling network in plants: an overview. Plant Signal. Behav. 2(2), 79–85 (2007)

    Article  Google Scholar 

  47. Chiolerio, A., Adamatzky, A.: Tactile sensing and computing on a random network of conducting fluid channels. Flex. Print. Electron. (2020)

    Google Scholar 

  48. Rajan, K., Bocchini, S., Chiappone, A., Roppolo, I., Perrone, D., Castellino, M., Bejtka, K., Lorusso, M., Ricciardi, C., Pirri, C.F., Chiolerio, A.: Worm and bipolar inkjet printed resistive switching devices based on silver nanocomposites. Flex. Print. Electron. 2, 024002 (2017)

    Article  Google Scholar 

  49. Porro, S., Jasmin, A., Bejtka, K., Conti, D., Perrone, D., Guastella, S., Pirri, C.F., Chiolerio, A., Ricciardi, C.: Low-temperature atomic layer deposition of TiO\(_{2}\) thin layers for the processing of memristive devices. J. Vac. Sci. Technol. A: Vac. Surf. Films 34, 01A147 (2016)

    Article  Google Scholar 

  50. Bevione, M., Chiolerio, A.: Benchmarking of inkjet printing methods for combined throughput and performance. Adv. Eng. Mater. (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adamatzky, A., Nikolaidou, A., Gandia, A., Chiolerio, A., Dehshibi, M.M. (2023). Reactive Fungal Wearable. In: Adamatzky, A. (eds) Fungal Machines. Emergence, Complexity and Computation, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-38336-6_8

Download citation

Publish with us

Policies and ethics