Skip to main content

Reactive Fungal Insoles

  • Chapter
  • First Online:
Fungal Machines

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 47))

  • 324 Accesses

Abstract

Mycelium bound composites are promising materials for a diverse range of applications including wearables and building elements. Their functionality surpasses some of the capabilities of traditionally passive materials, such as synthetic fibres, reconstituted cellulose fibres and natural fibres. Thereby, creating novel propositions including augmented functionality (sensory) and aesthetic (personal fashion). Biomaterials can offer multiple modal sensing capability such as mechanical loading (compressive and tensile) and moisture content. To assess the sensing potential of fungal insoles we undertook laboratory experiments on electrical response of bespoke insoles made from capillary matting colonised with oyster fungi Pleurotus ostreatus to compressive stress which mimics human loading when standing and walking. We have shown changes in electrical activity with compressive loading. The results advance the development of intelligent sensing insoles which are a building block towards more generic reactive fungal wearables. Using FitzhHugh-Nagumo model we numerically illustrated how excitation wave-fronts behave in a mycelium network colonising an insole and shown that it may be possible to discern pressure points from the mycelium electrical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Martini, E., Fiumalbi, T., Dell’Agnello, F., Ivanić, Z., Munih, M., Vitiello, N., Crea, S.: Pressure-sensitive insoles for real-time gait-related applications. Sensors 20(5), 1448 (2020)

    Article  Google Scholar 

  2. Munoz-Organero, M., Parker, J., Powell, L., Mawson, S.: Assessing walking strategies using insole pressure sensors for stroke survivors. Sensors 16(10), 1631 (2016)

    Article  Google Scholar 

  3. Khoo, I.-H., Marayong, P., Krishnan, V., Balagtas, M.N., Rojas, O.: Design of a biofeedback device for gait rehabilitation in post-stroke patients. In: 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1–4. IEEE (2015)

    Google Scholar 

  4. Park, J., Na, Y., Gu, G., Kim, J.: Flexible insole ground reaction force measurement shoes for jumping and running. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 1062–1067. IEEE (2016)

    Google Scholar 

  5. Ramirez-Bautista, J.A., Huerta-Ruelas, J.A., Chaparro-Cárdenas, S.L., Hernández-Zavala, A.: A review in detection and monitoring gait disorders using in-shoe plantar measurement systems. IEEE Rev. Biomed. Eng. 10, 299–309 (2017)

    Google Scholar 

  6. Zhang, H., Zanotto, D., Agrawal, S.K.: Estimating cop trajectories and kinematic gait parameters in walking and running using instrumented insoles. IEEE Robot. Autom. Lett. 2(4), 2159–2165 (2017)

    Google Scholar 

  7. Razak, A.H.A., Zayegh, A., Begg, R.K., Wahab, Y.: Foot plantar pressure measurement system: a review. Sensors 12(7), 9884–9912 (2012)

    Google Scholar 

  8. Tao, J., Dong, M., Li, L., Wang, C., Li, J., Liu, Y., Bao, R., Pan, C.: Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsyst. Nanoeng. 6(1), 62 (2020)

    Article  Google Scholar 

  9. Gao, L., et al.: Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range. Nano-Micro Lett. 13(1), 1–14 (2021)

    Article  MathSciNet  Google Scholar 

  10. Nurvv Ltd. NURVV Run Smart Insoles (2022). https://www.nurvv.com/en-gb/products/nurvv-run-insoles-trackers/. Accessed 18 Sept. 2022

  11. Nurvv Ltd. NURVV Run Smart Insoles operating time (2022). https://www.nurvv.com/en-gb/products/nurvv-run-insoles-trackers/. Accessed 18 Sept. 2022

  12. Nurvv Ltd. NURVV Run Smart Insoles (2022). https://www.nurvv.com/en-gb/support/sizing/. Accessed 18 Sept. 2022

  13. Adamatzky, A., Gandia, A.: Living mycelium composites discern weights via patterns of electrical activity. J. Bioresour. Bioprod. 7(1), 26–32 (2022)

    Article  Google Scholar 

  14. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Article  Google Scholar 

  15. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Article  Google Scholar 

  16. Pertsov, A.M., Davidenko, J.M., Salomonsz, R., Baxter, W.T., Jalife, J.: Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circ. Res. 72(3), 631–650 (1993)

    Google Scholar 

  17. Beeler, G.W., Reuter, H.: Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol. 268(1), 177–210 (1977)

    Google Scholar 

  18. Rogers, J.M., McCulloch, A.D.: A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41(8), 743–757 (1994)

    Google Scholar 

  19. Adamatzky, A., Huber, F., Schnauß, J.: Computing on actin bundles network. Sci. Rep. 9(1), 1–10 (2019)

    Article  Google Scholar 

  20. Adamatzky, A., Tegelaar, M., Wosten, H.A.B., Powell, A.L., Beasley, A.E., Mayne, R.: On boolean gates in fungal colony. Biosystems 193, 104138 (2020)

    Google Scholar 

  21. Adamatzky, A.: Towards proteinoid computers (2021). arXiv:2106.00883

  22. Baluska, D.V.F., Mancuso, S. (eds.): Oscillations in plants. Communication in Plants: Neuronal Aspects of Plant Life, pp. 261–275. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  23. Shabala, S., Shabala, L., Gradmann, D., Chen, Z., Newman, I., Mancuso, S.: Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. J. Exp. Botany 57(1), 171–184, 12 (2005)

    Google Scholar 

  24. Ghosh, A.K., Tibarewala, D.N., Mukherjee, P., Chakraborty, S., Dr Ganguli, S.: Preliminary study on static weight distribution under the human foot as a measure of lower extremity disability. Med. Biol. Eng. Comput. 17, 737–41, 12 (1979)

    Google Scholar 

  25. Cavanagh, M.M., Rodgers, P. R.: Pressure Distribution Underneath the Human Foot, pp. 85–95. Springer Netherlands, Dordrecht (1985)

    Google Scholar 

  26. Lin, F., Wang, A., Zhuang, Y., Tomita, M.R., Wenyao, X.: Smart insole: a wearable sensor device for unobtrusive gait monitoring in daily life. IEEE Trans. Ind. Inf. 12(6), 2281–2291 (2016)

    Article  Google Scholar 

  27. Xu, W., Huang, M.-C., Amini, N., Liu, J.J., He, L., Sarrafzadeh, M.: Smart insole: a wearable system for gait analysis. In: Proceedings of the 5th International Conference on PErvasive Technologies Related to Assistive Environments, PETRA ’12, New York, NY, USA. Association for Computing Machinery (2012)

    Google Scholar 

  28. Wang, B., Rajput, K.S., Tam, W.-K., Tung, A.K.H., Yang, Z.: Freewalker: a smart insole for longitudinal gait analysis. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3723–3726 (2015)

    Google Scholar 

  29. Ziagkas, E., Loukovitis, A., Zekakos, D.X., Chau, T.D.-P., Petrelis, A., Grouios, G.: A novel tool for gait analysis: validation study of the smart insole podosmart®. Sensors 21(17) (2021)

    Google Scholar 

  30. Tan, A.M., Fuss, F.K., Weizman, Y., Troynikov, O.: Development of a smart insole for medical and sports purposes. Procedia Eng. 112, 152–156 (2015). ’The Impact of Technology on Sport VI’ 7th Asia-Pacific Congress on Sports Technology, APCST2015

    Google Scholar 

  31. Oks, A., Katashev, A., Zadinans, M., Rancans, M., Litvak, J.: Development of smart sock system for gate analysis and foot pressure control. In: Kyriacou, E., Christofides, S., Pattichis, C.S. (eds.), XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016, pp. 472–475, Cham. Springer International Publishing (2016)

    Google Scholar 

  32. Sun, J., Guo, H., Schädli, G.N., Tu, K., Schär, S., Schwarze, F.W.M.R., Panzarasa, G., Ribera, J., Burgert, I.: Enhanced mechanical energy conversion with selectively decayed wood. Sci. Adv. 7(11), eabd9138 (2021)

    Google Scholar 

  33. de Fazio, R., Perrone, E., Velázquez, R., De Vittorio, M., Visconti, P.: Development of a self-powered piezo-resistive smart insole equipped with low-power BLE connectivity for remote gait monitoring. Sensors 21(13) (2021)

    Google Scholar 

  34. Wang, W., Cao, J., Yu, J., Liu, R., Bowen, C.R., Liao, W.-H.: Self-powered smart insole for monitoring human gait signals. Sensors 19(24) (2019)

    Google Scholar 

  35. Janson, D., Newman, S.T., Dhokia, V.: Next generation safety footwear. Procedia Manuf. 38:1668–1677 (2019). 29th International Conference on Flexible Automation and Intelligent Manufacturing ( FAIM 2019), 24–28 June 2019, Limerick, Ireland, Beyond Industry 4.0: Industrial Advances, Engineering Education and Intelligent Manufacturing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nikolaidou, A., Phillips, N., Tsompanas, MA., Adamatzky, A. (2023). Reactive Fungal Insoles. In: Adamatzky, A. (eds) Fungal Machines. Emergence, Complexity and Computation, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-38336-6_11

Download citation

Publish with us

Policies and ethics