Skip to main content

An Overview of Model-Driven and Data-Driven Forecasting Methods for Smart Transportation

  • Chapter
  • First Online:
Data Analytics and Computational Intelligence: Novel Models, Algorithms and Applications

Part of the book series: Studies in Big Data ((SBD,volume 132))

  • 475 Accesses

Abstract

Rapid economic development has brought with it an increase in traffic demand and, as a result, serious traffic problems (e.g., congestion, air pollution, and road accidents). Intelligent transport systems (ITS) can significantly improve the efficiency and sustainability of traffic networks by reducing all these problems. Traffic forecasting is an essential component of ITS applications. By providing timely and accurate real-time traffic information for traffic drivers, which can be used for better decision-making and quick actions, think about the future development of real smart transportation in smart cities. Traffic flow forecasting is still an open challenge. Many methods that deal with this problem have been tried out in the empirical literature, but there is still a lot of room for improvement. A comprehensive overview of the development of traffic flow forecasting models is provided in the form of model-driven and data-driven approaches. Through this literature review, which describes the historical evolution of forecasting models, we can identify key trends in forecasting: (1) adjustments and extensions of model-driven to deal with real phenomena; (2) advances in data-driven techniques; (3) the explosion of big data; (4) the convergence of many methods toward machine learning (ML); and (5) the development of hybrid models coupling the advantages of different models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao, Y.: Vehicle location and navigation systems (1997)

    Google Scholar 

  2. Qi, L.: Research on intelligent transportation system technologies and applications. In: 2008 Workshop on Power Electronics and Intelligent Transportation System, pp. 529–531. IEEE (2008). https://doi.org/10.1109/PEITS.2008.124

  3. Fantin Irudaya Raj, E., Appadurai, M.: Internet of things-based smart transportation system for smart cities. In: Intelligent Systems for Social Good: Theory and Practice, pp. 39–50. Springer (2022). https://doi.org/10.1007/978-981-19-0770-8_4

  4. Zhu, L., Yu, F.R., Wang, Y., Ning, B., Tang, T.: Big data analytics in intelligent transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. 20, 383–398. (2018). https://doi.org/10.1109/TITS.2018.2815678

  5. Rani, P., Sharma, R.: Intelligent transportation system for internet of vehicles based vehicular networks for smart cities. Comput. Electr. Eng. 105, 108543 (2023). https://doi.org/10.1016/j.compeleceng.2022.108543

    Article  Google Scholar 

  6. Paul, A., Chilamkurti, N., Daniel, A., Rho, S.: Intelligent transportation systems. Intell. Veh. Netw. Commun. Fundam. Archit. Solut. Romer. B Ed. (2017). https://doi.org/10.1016/B978-0-12-809266-8.00002-8

  7. Vlahogianni, E.I., Golias, J.C., Karlaftis, M.G.: Short-term traffic forecasting: overview of objectives and methods. Transp. Rev. 24, 533–557 (2004). https://doi.org/10.1080/0144164042000195072

    Article  Google Scholar 

  8. Zhang, S., Lin, K.-P.: Short-term traffic flow forecasting based on data-driven model. Mathematics 8, 152 (2020). https://doi.org/10.3390/math8020152

    Article  Google Scholar 

  9. Kerner, B.S.: Congested traffic flow: observations and theory. Transp. Res. Rec. 1678, 160–167 (1999). https://doi.org/10.3141/1678-20

    Article  Google Scholar 

  10. Guerrero-Ibáñez, J., Zeadally, S., Contreras-Castillo, J.: Sensor technologies for intelligent transportation systems. Sensors 18, 1212 (2018). https://doi.org/10.3390/s18041212

    Article  Google Scholar 

  11. Ren, C., Chai, C., Yin, C., Ji, H., Cheng, X., Gao, G., Zhang, H.: Short-term traffic flow prediction: a method of combined deep learnings. J. Adv. Transp. 2021, 1–15 (2021). https://doi.org/10.1155/2021/9928073

    Article  Google Scholar 

  12. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: Short-term traffic forecasting: where we are and where we’re going. Transp. Res. Part C Emerg. Technol. 43, 3–19 (2014). https://doi.org/10.1016/j.trc.2014.01.005

    Article  Google Scholar 

  13. Hoogendoorn, S.P., Bovy, P.H.: State-of-the-art of vehicular traffic flow modelling. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 215, 283–303 (2001). https://doi.org/10.1177/095965180121500402

    Article  Google Scholar 

  14. Cascetta, E.: Transportation Systems Engineering: Theory and Methods. Springer Science & Business Media (2013)

    Google Scholar 

  15. van Wageningen-Kessels, F., Van Lint, H., Vuik, K., Hoogendoorn, S.: Genealogy of traffic flow models. EURO J. Transp. Logist. 4, 445–473 (2015). https://doi.org/10.1007/s13676-014-0045-5

    Article  Google Scholar 

  16. Lana, I., Del Ser, J., Velez, M., Vlahogianni, E.I.: Road traffic forecasting: recent advances and new challenges. IEEE Intell. Transp. Syst. Mag. 10, 93–109 (2018). https://doi.org/10.1109/MITS.2018.2806634

    Article  Google Scholar 

  17. Zhang, J., Wang, F.-Y., Wang, K., et al.: Data-driven intelligent transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. 12, 1624–1639 (2011). https://doi.org/10.1109/TITS.2011.2158001

    Article  Google Scholar 

  18. Wu, Y., Tan, H., Qin, L., Ran, B., Jiang, Z.: A hybrid deep learning based traffic flow prediction method and its understanding. Transp. Res. Part C Emerg. Technol. 90, 166–180 (2018). https://doi.org/10.1016/j.trc.2018.03.001

    Article  Google Scholar 

  19. Kashifi, M.T., Al-Turki, M., Sharify, A.W.: Deep hybrid learning framework for spatiotemporal crash prediction using big traffic data. Int. J. Transp. Sci. Technol. (2022). https://doi.org/10.1016/j.ijtst.2022.07.003

    Article  Google Scholar 

  20. Wang, Y., Yu, X., Guo, J., Papamichail, I., Papageorgiou, M., Zhang, L., Sun, J., et al.: Macroscopic traffic flow modelling of large-scale freeway networks with field data verification: state-of-the-art review, benchmarking framework, and case studies using METANET. Transp. Res. Part C Emerg. Technol. 145, 103904 (2022). https://doi.org/10.1016/j.trc.2022.103904

  21. Treiber, M., Kesting, A.: Traffic Flow Dynamics: Data, Models and Simulation. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32460-4

  22. Seo, T., Bayen, A.M., Kusakabe, T., Asakura, Y.: Traffic state estimation on highway: a comprehensive survey. Annu. Rev. Control 43, 128–151 (2017). https://doi.org/10.1016/j.arcontrol.2017.03.005

    Article  Google Scholar 

  23. Greenshields, B.D., Thompson, J.T., Dickinson, H.C., Swinton, R.S.: The Photographic Method of Studying Traffic Behavior. Note on p. 382 (1933)

    Google Scholar 

  24. Chen, C.P., Zhang, C.-Y.: Data-intensive applications, challenges, techniques and technologies: a survey on Big Data. Inf. Sci. 275, 314–347 (2014). https://doi.org/10.1016/j.ins.2014.01.015

    Article  Google Scholar 

  25. Hofleitner, A., Herring, R., Bayen, A.: Arterial travel time forecast with streaming data: a hybrid approach of flow modeling and machine learning. Transp. Res. Part B Methodol. 46, 1097–1122 (2012). https://doi.org/10.1016/j.trb.2012.03.006

    Article  Google Scholar 

  26. Mohammadian, S., Zheng, Z., Haque, M., Bhaskar, A.: Continuum Modelling of Freeway Traffic Flows in the Era of Connected and Automated Vehicles: A Critical Perspective and Research Needs (2021). https://doi.org/10.48550/arXiv.2111.04955

  27. Lighthill, M.J., Whitham, G.B.: On kinematic waves II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 229, 317–345 (1955). https://doi.org/10.1098/rspa.1955.0089

  28. Richards, P.I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956). https://doi.org/10.1287/opre.4.1.42

    Article  MathSciNet  MATH  Google Scholar 

  29. Barceló J, Casas J (2005) Dynamic network simulation with AIMSUN. In: Simulation Approaches in Transportation Analysis: Recent Advances and Challenges, pp. 57–98.https://doi.org/10.1007/0-387-24109-4_3

  30. Payne, H.J.: Model of freeway traffic and control. Math. Model Public Syst., 51–61 (1971)

    Google Scholar 

  31. Daganzo, C.F.: The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp. Res. Part B Methodol. 28, 269–287 (1994). https://doi.org/10.1016/0191-2615(94)90002-7

    Article  Google Scholar 

  32. Daganzo, C.F.: The cell transmission model, Part II: network traffic. Transp. Res. Part B Methodol. 29, 79–93 (1995). https://doi.org/10.1016/0191-2615(94)00022-Rt

    Article  Google Scholar 

  33. Wang, Y., Papageorgiou, M., Messmer, A.: Renaissance–a unified macroscopic model-based approach to real-time freeway network traffic surveillance. Transp. Res. Part C Emerg. Technol. 14, 190–212 (2006). https://doi.org/10.1016/j.trc.2006.06.001

    Article  Google Scholar 

  34. Nagel, K., Wagner, P., Woesler, R.: Still flowing: approaches to traffic flow and traffic jam modeling. Oper. Res. 51, 681–710 (2003). https://doi.org/10.1287/opre.51.5.681.16755

    Article  MathSciNet  MATH  Google Scholar 

  35. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035 (1995). https://doi.org/10.1103/PhysRevE.51.1035

    Article  Google Scholar 

  36. Jiang, R., Wu, Q., Zhu, Z.: Full velocity difference model for a car-following theory. Phys. Rev. E 64, 017101 (2001). https://doi.org/10.1103/PhysRevE.64.017101

    Article  Google Scholar 

  37. Rakha, H., Crowther, B.: Comparison of Greenshields, Pipes, and Van Aerde car-following and traffic stream models. Transp. Res. Rec. 1802, 248–262 (2002)

    Article  Google Scholar 

  38. Minderhoud, M.M.: Supported Driving: Impacts on Motorway Traffic Flow (1999)

    Google Scholar 

  39. Prigogine, I., Herman, R., Schechter, R.S.: Kinetic theory of vehicular traffic. IEEE Trans. Syst. Man Cybern., 295–295 (1972)

    Google Scholar 

  40. Solomatine, D., See, L.M., Abrahart, R.J.: Data-driven modelling: concepts, approaches and experiences. Pract. Hydroinformatics, 17–30 (2009). https://doi.org/10.1007/978-3-540-79881-1_2

  41. Cheslow, M., Hatcher, S.G., Patel, V.M.: An initial evaluation of alternative intelligent vehicle highway systems architectures (1992)

    Google Scholar 

  42. Anand, N.C., Scoglio, C., Natarajan, B.: GARCH—non-linear time series model for traffic modeling and prediction. In: NOMS 2008–2008 IEEE Network Operations and Management Symposium, pp. 694–697. IEEE (2008). https://doi.org/10.1109/NOMS.2008.4575191

  43. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting (2017). https://doi.org/10.48550/arXiv.1707.01926

  44. Ma, T., Zhou, Z., Abdulhai, B.: Nonlinear multivariate time–space threshold vector error correction model for short term traffic state prediction. Transp. Res. Part B Methodol. 76, 27–47 (2015). https://doi.org/10.1016/j.trb.2015.02.008

    Article  Google Scholar 

  45. Chen, X., Li, L., Shi, Q.: Stochastic Evolutions of Dynamic Traffic Flow: Modeling and Applications. Springer, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-662-44572-3

  46. Qi, T., Chen, L., Li, G., Li, Y., Wang, C.: FedAGCN: a traffic flow prediction framework based on federated learning and Asynchronous Graph Convolutional Network. Appl. Soft Comput. 138, 110175 (2023). https://doi.org/10.1016/j.asoc.2023.110175

    Article  Google Scholar 

  47. Chen, C., Wang, Y., Li, L., Hu, J., Zhang, Z.: The retrieval of intra-day trend and its influence on traffic prediction. Transp. Res. Part C Emerg. Technol. 22, 103–118 (2012). https://doi.org/10.1016/j.trc.2011.12.006

    Article  Google Scholar 

  48. Kamarianakis, Y., Shen, W., Wynter, L.: Real-time road traffic forecasting using regime-switching space-time models and adaptive LASSO. Appl. Stoch. Models Bus. Ind. 28, 297–315 (2012). https://doi.org/10.1002/asmb.1937

    Article  MathSciNet  Google Scholar 

  49. Chen, Q., Song, Y., Zhao, J.: Short-term traffic flow prediction based on improved wavelet neural network. Neural Comput. Appl. 33, 8181–8190 (2021). https://doi.org/10.1007/s00521-020-04932-5

    Article  Google Scholar 

  50. Zhang, H., Wang, X., Cao, J., Tang, M., Guo, Y.: A hybrid short-term traffic flow forecasting model based on time series multifractal characteristics. Appl. Intell. 48, 2429–2440 (2018). https://doi.org/10.1007/s10489-017-1095-9

    Article  Google Scholar 

  51. Abdulhai, B., Porwal, H., Recker, W.: Short term freeway traffic flow prediction using genetically-optimized time-delay-based neural networks (1999)

    Google Scholar 

  52. Ishak, S., Al-Deek, H.: Performance evaluation of short-term time-series traffic prediction model. J. Transp. Eng. 128, 490–498 (2002). https://doi.org/10.1061/(ASCE)0733-947X(2002)128:6(490)

    Article  Google Scholar 

  53. Dochy, T.: Arbres de régression et réseaux de neurones appliqués à la prévision de trafic routier. These de doctorat, Paris 9 (1995)

    Google Scholar 

  54. Van Lint, J.W.C.: Reliable travel time prediction for freeways. Netherlands TRAIL Research School (2004)

    Google Scholar 

  55. Vlahogianni, E., Karlaftis, M.: Temporal aggregation in traffic data: implications for statistical characteristics and model choice. Transp. Lett. 3, 37–49 (2011). https://doi.org/10.3328/TL.2011.03.01.37-49

    Article  Google Scholar 

  56. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: Short-term traffic forecasting: where we are and where we’re going. Transp. Res. Part C 1, 3–19 (2014). https://doi.org/10.1016/j.trc.2014.01.005

    Article  Google Scholar 

  57. Guo, J., Williams, B.M., Smith, B.L.: Data collection time intervals for stochastic short-term traffic flow forecasting. Transp. Res. Rec. 2024, 18–26 (2007)

    Article  Google Scholar 

  58. Jiang, X., Adeli, H.: Wavelet packet-autocorrelation function method for traffic flow pattern analysis. Comput. Civ. Infrastruct. Eng. 19, 324–337 (2004). https://doi.org/10.1111/j.1467-8667.2004.00360.x

    Article  Google Scholar 

  59. Guo, F.: Short-Term Traffic Prediction Under Normal and Abnormal Conditions. Imperial College London (2013)

    Google Scholar 

  60. Smith, B.L.: Forecasting freeway traffic flow for intelligent transportation systems application. Transp. Res. Part A 1, 61 (1997)

    Google Scholar 

  61. Williams, B.M., Durvasula, P.K., Brown, D.E.: Urban freeway traffic flow prediction: application of seasonal autoregressive integrated moving average and exponential smoothing models. Transp. Res. Rec. 1644, 132–141 (1998). https://doi.org/10.3141/1644-14

    Article  Google Scholar 

  62. Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal Arima process: theoretical basis and empirical results. J. Transp. Eng. 129, 664–672 (2003). https://doi.org/10.1061/(ASCE)0733-947X(2003)129:6(664)

    Article  Google Scholar 

  63. Bates, J.M., Granger, C.W.: The combination of forecasts. J. Oper. Res. Soc. 20, 451–468 (1969). https://doi.org/10.1057/jors.1969.103

    Article  Google Scholar 

  64. Lu, S., Zhang, Q., Chen, G., Seng, D.: A combined method for short-term traffic flow prediction based on recurrent neural network. Alex. Eng. J. 60, 87–94 (2021). https://doi.org/10.1016/j.aej.2020.06.008

    Article  Google Scholar 

  65. Zheng, W., Lee, D.-H., Shi, Q.: Short-term freeway traffic flow prediction: Bayesian combined neural network approach. J. Transp. Eng. 132, 114–121 (2006). https://doi.org/10.1061/(ASCE)0733-947X(2006)132:2(114)

    Article  Google Scholar 

  66. Abdi, J., Moshiri, B.: Application of temporal difference learning rules in short-term traffic flow prediction. Expert Syst. 32, 49–64 (2015). https://doi.org/10.1111/exsy.12055

    Article  Google Scholar 

  67. Chen, Q., Song, Y., Zhao, J.: Short-term traffic flow prediction based on improved wavelet neural network. Neural Comput. Appl., 1–10 (2020). https://doi.org/10.1007/s00521-020-04932-5

  68. Choi, T.-M., Yu, Y., Au, K.-F.: A hybrid SARIMA wavelet transform method for sales forecasting. Decis. Support Syst. 51, 130–140 (2011). https://doi.org/10.1016/j.dss.2010.12.002

    Article  Google Scholar 

  69. Diao, Z., Zhang, D., Wang, X., et al.: A hybrid model for short-term traffic volume prediction in massive transportation systems. IEEE Trans. Intell. Transp. Syst. 20, 935–946 (2018). https://doi.org/10.1109/TITS.2018.2841800

    Article  Google Scholar 

  70. Hossain, J.: A Hybrid Approach of Traffic Flow Prediction Using Wavelet Transform and Fuzzy Logic, p. 75 (2017)

    Google Scholar 

  71. Karlaftis, M.G., Vlahogianni, E.I.: Statistical methods versus neural networks in transportation research: differences, similarities and some insights. Transp. Res. Part C Emerg. Technol. 19, 387–399 (2011). https://doi.org/10.1016/j.trc.2010.10.004

    Article  Google Scholar 

  72. Ma, T., Antoniou, C., Toledo, T.: Hybrid machine learning algorithm and statistical time series model for network-wide traffic forecast. Transp. Res. Part C Emerg. Technol. 111, 352–372 (2020). https://doi.org/10.1016/j.trc.2019.12.022

    Article  Google Scholar 

  73. Wang, J., Shi, Q.: Short-term traffic speed forecasting hybrid model based on Chaos-Wavelet Analysis-Support Vector Machine theory. Transp. Res. Part C Emerg. Technol. 27, 219–232 (2013). https://doi.org/10.1016/j.trc.2012.08.004

    Article  Google Scholar 

  74. Wei, Y., Chen, M.-C.: Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transp. Res. Part C Emerg. Technol. 21, 148–162 (2012). https://doi.org/10.1016/j.trc.2011.06.009

    Article  Google Scholar 

  75. Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175 (2003). https://doi.org/10.1016/S0925-2312(01)00702-0

    Article  MATH  Google Scholar 

  76. Kirby, H.R., Watson, S.M., Dougherty, M.S.: Should we use neural networks or statistical models for short-term motorway traffic forecasting? Int. J. Forecast. 13, 43–50 (1997). https://doi.org/10.1016/S0169-2070(96)00699-1

    Article  Google Scholar 

  77. Smith, B.L., Demetsky, M.J.: Traffic flow forecasting: comparison of modeling approaches. J. Transp. Eng. 123, 261–266 (1997). https://doi.org/10.1061/(ASCE)0733-947X(1997)123:4(261)

    Article  Google Scholar 

  78. Oh, S., Byon, Y.-J., Jang, K., Yeo, H.: Short-term travel-time prediction on highway: a review of the data-driven approach. Transp. Rev. 35, 4–32 (2015). https://doi.org/10.1080/01441647.2014.992496

    Article  Google Scholar 

  79. Van Hinsbergen, C.P., Van Lint, J.W., Sanders, F.M.: Short term traffic prediction models. In: Proceedings of the 14TH World Congress on Intelligent Transport Systems its Held Beijing, Oct 2007 (2007)

    Google Scholar 

  80. Yang, H.-F., Dillon, T.S., Chang, E., Phoebe Chen, Y.-P.: Optimized configuration of exponential smoothing and extreme learning machine for traffic flow forecasting. IEEE Trans. Ind. Inform. 15, 23–34 (2019). https://doi.org/10.1109/TII.2018.2876907

    Article  Google Scholar 

  81. Ahmed, M.S., Cook, A.R.: Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Transp. Res. Rec. (1979)

    Google Scholar 

  82. Hamed, M.M., Al-Masaeid, H.R., Said, Z.M.B.: Short-term prediction of traffic volume in urban arterials. J. Transp. Eng. 121, 249–254 (1995). https://doi.org/10.1061/(ASCE)0733-947X(1995)121:3(249)

  83. Smith, B.L., Williams, B.M., Keith, O.R.: Comparison of parametric and nonparametric models for traffic flow forecasting. Transp. Res. Part C Emerg. Technol. 10, 303–321 (2002). https://doi.org/10.1016/S0968-090X(02)00009-8

    Article  Google Scholar 

  84. Chan, K.Y., Dillon, T.S., Singh, J., Chang, E.: Traffic flow forecasting neural networks based on exponential smoothing method. In: 2011 6th IEEE Conference on Industrial Electronics and Applications, pp. 376–381. IEEE (2011). https://doi.org/10.1109/ICIEA.2011.5975612

  85. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960). https://doi.org/10.1115/1.3662552

    Article  MathSciNet  Google Scholar 

  86. Okutani, I., Stephanedes, Y.J.: Dynamic prediction of traffic volume through Kalman filtering theory. Transp. Res. Part B Methodol. 18, 1–11 (1984). https://doi.org/10.1016/0191-2615(84)90002-X

    Article  Google Scholar 

  87. Kumar, S.V.: Traffic flow prediction using kalman filtering technique. Procedia Eng. 187, 582–587 (2017). https://doi.org/10.1016/j.proeng.2017.04.417

    Article  Google Scholar 

  88. Box, G.E.: GM Jenkins Time Series Analysis: Forecasting and Control. San Franc Holdan-Day (1970)

    Google Scholar 

  89. Rojas, I., Valenzuela, O., Rojas, F., Guillén, A., Herrera, L.J., Pomares, H., Pasadas, M., et al.: Soft-computing techniques and ARMA model for time series prediction. Neurocomputing 71, 519–537 (2008). https://doi.org/10.1016/j.neucom.2007.07.018

  90. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis, Forecasting and Control-Segunda Edição. Prentice Hall San Francisco (1976)

    Google Scholar 

  91. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer (2002).https://doi.org/10.1007/0-387-21657-X_8

  92. Chung, E., Rosalion, N.: Short term traffic flow prediction. In: Australasian Transport Research Forum (ATRF), 24th, 2001, Hobart, Tasmania, Australia (2001)

    Google Scholar 

  93. Kumar, S.V., Vanajakshi, L.: Short-term traffic flow prediction using seasonal ARIMA model with limited input data. Eur. Transp. Res. Rev. 7, 1–9 (2015). https://doi.org/10.1007/s12544-015-0170-8

    Article  Google Scholar 

  94. Zhang, Y., Liu, Y.: Comparison of parametric and nonparametric techniques for non-peak traffic forecasting. World Acad. Sci. Eng. Technol. 51, 8–14 (2009). https://doi.org/10.5281/zenodo.1329472

    Article  Google Scholar 

  95. Raza, A., Zhong, M.: Hybrid artificial neural network and locally weighted regression models for lane-based short-term urban traffic flow forecasting. Transp. Plan Technol. 41, 901–917 (2018). https://doi.org/10.1080/03081060.2018.1526988

    Article  Google Scholar 

  96. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  97. Castro-Neto, M., Jeong, Y. S., Jeong, M. K., & Han, L. D.: Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert systems with applications, 36(3), 6164–6173.(2009). https://doi.org/10.1016/j.eswa.2008.07.069

  98. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR (1998).https://doi.org/10.1017/S0269888998214044

  99. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR (1994)

    Google Scholar 

  100. Abiodun, O.I., Jantan, A., Omolara, A.E., et al.: State-of-the-art in artificial neural network applications: a survey. Heliyon 4, e00938 (2018). https://doi.org/10.1016/j.heliyon.2018.e00938

    Article  Google Scholar 

  101. Zhang, G., Eddy Patuwo, B.Y., Hu, M.: Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 14, 35–62 (1998)https://doi.org/10.1016/S0169-2070(97)00044-7

  102. Sharda, R., Patil, R.B.: Connectionist approach to time series prediction: an empirical test. J. Intell. Manuf. 3, 317–323 (1992). https://doi.org/10.1007/BF01577272

    Article  Google Scholar 

  103. Smith, B.L., Demetsky, M.J.: Short-term traffic flow prediction models-a comparison of neural network and nonparametric regression approaches. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1706–1709 (1994). https://doi.org/10.1109/ICSMC.1994.400094

  104. Yasdi, R.: Prediction of road traffic using a neural network approach. Neural Comput. Appl. 8, 135–142 (1999). https://doi.org/10.1007/s005210050015

    Article  Google Scholar 

  105. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transp. Res. Part C Emerg. Technol. 13, 211–234 (2005). https://doi.org/10.1016/j.trc.2005.04.007

    Article  Google Scholar 

  106. Mrad, S., Mraihi, R.: Short term prediction of hourly traffic volume using neural network in interurban freeway. In: 2019 International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA), pp. 1–5 (2019). https://doi.org/10.1109/LOGISTIQUA.2019.8907310

  107. Song, C., Lee, H., Kang, C., Lee, W., Kim, Y.B., Cha, S.W.: Traffic speed prediction under weekday using convolutional neural networks concepts. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 1293–1298 (2017). https://doi.org/10.1109/IVS.2017.7995890

  108. Sawah, M.S., Taie, S.A., Ibrahim, M.H., Hussein, S.A.: An accurate traffic flow prediction using long-short term memory and gated recurrent unit networks. Bull. Electr. Eng. Inform. 12, 1806–1816 (2023). https://doi.org/10.11591/eei.v12i3.5080

  109. Kumar, A., Sunitha, R.: MuSeFFF: multi-stage feature fusion framework for traffic prediction. Intell. Syst. Appl., 200–227 (2023). https://doi.org/10.1016/j.iswa.2023.200227

  110. Méndez, M., Merayo, M.G., Núñez, M.: Long-term traffic flow forecasting using a hybrid CNN-BiLSTM model. Eng. Appl. Artif. Intell. 121, 106041 (2023). https://doi.org/10.1016/j.engappai.2023.106041

    Article  Google Scholar 

  111. Kim, K.: Financial time series forecasting using support vector machines. Neurocomputing 55, 307–319 (2003). https://doi.org/10.1016/S0925-2312(03)00372-2

    Article  Google Scholar 

  112. Ren, Y., Xie, K.: Transfer knowledge between sub-regions for traffic prediction using deep learning method. In: Intelligent Data Engineering and Automated Learning–IDEAL 2019: 20th International Conference, Manchester, UK, November 14–16, 2019, Proceedings, Part I 20, pp. 208–219. Springer (2019). https://doi.org/10.1007/978-3-030-33607-3_23

  113. Majumdar, S., Subhani, M.M., Roullier, B., Anjum, A., Zhu, R.: Congestion prediction for smart sustainable cities using IoT and machine learning approaches. Sustain. Cities Soc. 64, 102500 (2021). https://doi.org/10.1016/j.scs.2020.102500

    Article  Google Scholar 

  114. Subramaniyan, A.B., Wang, C., Shao, Y., Li, W., Wang, H., Zhang, G., Ma, T.: Hybrid recurrent neural network modeling for traffic delay prediction at signalized intersections along an urban arterial. IEEE Trans. Intell. Transp. Syst. (2022).https://doi.org/10.1109/TITS.2022.3201880

  115. Khashei, M., Bijari, M.: A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Appl. Soft Comput. 11, 2664–2675 (2011). https://doi.org/10.1016/j.asoc.2010.10.015

    Article  Google Scholar 

  116. Zeng, D., Xu, J., Gu, J., Liu, L., Xu, G.: Short term traffic flow prediction using hybrid ARIMA and ANN models. In: 2008 Workshop on Power Electronics and Intelligent Transportation System, pp. 621–625 (2008). https://doi.org/10.1109/PEITS.2008.135

  117. Luo, X., Niu, L., Zhang, S.: An algorithm for traffic flow prediction based on improved SARIMA and GA. KSCE J. Civ. Eng. 22, 4107–4115 (2018). https://doi.org/10.1007/s12205-018-0429-4

    Article  Google Scholar 

  118. Ouyang, L., Zhu, F., Xiong, G., Zhao, H., Wang, F., Liu, T.: Short-term traffic flow forecasting based on wavelet transform and neural network. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6 (2017). https://doi.org/10.1109/ITSC.2017.8317895

  119. Mousavizadeh Kashi, S.O., Akbarzadeh, M.: A framework for short-term traffic flow forecasting using the combination of wavelet transformation and artificial neural networks. J. Intell. Transp. Syst. 23, 60–71 (2019). https://doi.org/10.1080/15472450.2018.1493929

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Mrad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mrad, S., Mraihi, R. (2023). An Overview of Model-Driven and Data-Driven Forecasting Methods for Smart Transportation. In: Rivera, G., Cruz-Reyes, L., Dorronsoro, B., Rosete, A. (eds) Data Analytics and Computational Intelligence: Novel Models, Algorithms and Applications. Studies in Big Data, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-031-38325-0_8

Download citation

Publish with us

Policies and ethics