Skip to main content

Neo-Fuzzy Radial-Basis Function Neural Network and Its Combined Learning

  • Chapter
  • First Online:
System Analysis and Artificial Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1107))

  • 233 Accesses

Abstract

The Neo-Fuzzy Radial Basis Function Stacking Neural Network (NF-RBFNN) is a proposed hybrid neural network system that combines traditional RBFNN and neo-fuzzy neuron. The combination aims to create an efficient system that performs well in scenarios with limited data sets or when fast learning is required due to online data acquisition. NF-RBFNN consists of two independent subsystems, which facilitate quick parameter setting and implementation. With the ability to approximate nonlinear functions and handle uncertain information, the neo-fuzzy neuron and traditional radial basis function neural network are known for their respective strengths. By merging these two approaches, the NF-RBFNN is an effective hybrid neural network that can improve approximation properties while handling uncertainties. Ultimately, this simple yet efficient system excels in situations where quick learning and uncertain information handling come into play. With its impressive performance and straightforward implementation, the system holds great potential for a multitude of practical applications in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mumford, C., Jain, L.: Computational Intelligence, Collaboration, Fuzzy and Emergence. Springer, Berlin (2009)

    Google Scholar 

  2. Kruse, R., Borgelt, C., Klawonn, F., et al.: Computational Intelligence. A Methodological Introduction. Springer, Berlin (2013)

    Google Scholar 

  3. Kacprzyk, J., Pedrycz, W.: Springer Handbook of Computational Intelligence. Springer, Berlin, Heidelberg (2015)

    Book  MATH  Google Scholar 

  4. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signal Syst. 2, 303–314 (1989). https://doi.org/10.1007/BF02551274

    Article  MathSciNet  MATH  Google Scholar 

  5. Kung, S.Y.: Kernel Methods and Machine Learning. University, Cambridge (2014)

    Google Scholar 

  6. Moody, J.: Cjd: Fast learning in networks of locally tuned processing units. Neural Comput. 1, 281–294 (1989)

    Article  Google Scholar 

  7. Poggio, T., Girosi, F.: Networks for approximation and learning. Proc. IEEE 78, 1481–1497 (1990)

    Article  MATH  Google Scholar 

  8. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3, 246–257 (1991)

    Article  Google Scholar 

  9. Leonard, J.A., Kramer, M.A., Ungar, L.H.: Using radial basis functions to approximate a function and its error bounds. IEEE Trans. Neural Netw. 3, 624–627 (1992)

    Article  Google Scholar 

  10. Amirian, M., Schwenker, F.: Radial basis function networks for convolutional neural networks to learn similarity distance metric and improve interpretability. IEEE Access 8, 123087–123097 (2020)

    Article  Google Scholar 

  11. Angelov P.P.: Evolving Rule-Based Models: A Tool for Design of Flexible Adaptive Systems. Physica Verlag HD: Imprint: Physica, Heidelberg (2002)

    Google Scholar 

  12. Kasabov, N.K.: Evolving Connectionist Systems: The Knowledge Engineering Approach, 2nd edn. Springer, New York, London (2007)

    MATH  Google Scholar 

  13. Angelov, P.P., Kasabov, N.K.: Evolving computational intelligence systems. In: Proceedings of the 1st International Workshop on Genetic Fuzzy Systems, Granada, pp. 76–82 (2005)

    Google Scholar 

  14. Lughofer, E.: Evolving Fuzzy Systems - Methodologies. Advanced Concepts and Applications. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  15. Bodyanskiy, Y., Deineko, A., Tyshchenko, A.: An evolving radial basis neural network with adaptive learning of its parameters and architecture. Autom. Control Comput. Sci. 49, 255–260 (2015)

    Article  Google Scholar 

  16. Miki, T.: Analog Implementation of Neo-Fuzzy Neuron and Its On-board Learning (1999)

    Google Scholar 

  17. Yamakawa, J., Uchino, E., Miki, J., Kusanagi, H.: A neo-fuzzy neuron and its application to system identification and prediction of the system behavior. In: Proceedings of the 2nd International Conference on Fuzzy Logic & Neural Networks, Iizuka, Japan (1992)

    Google Scholar 

  18. Perfilieva, I.: Fuzzy transforms: theory and applications. Fuzzy Sets Syst. 157, 993–1023 (2006). https://doi.org/10.1016/j.fss.2005.11.012

    Article  MathSciNet  MATH  Google Scholar 

  19. Epanechnikov, V.A.: Non-parametric estimation of a multivariate probability density. Theory Probab. Appl. 14, 153–158 (1969). https://doi.org/10.1137/1114019

    Article  MathSciNet  Google Scholar 

  20. Nelles, O.: Nonlinear Systems Identification. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  21. Zahirniak, D.R., Chapman, R., Rogers, S.K., et al: Pattern recognition using radial basis function network. Aerospace Appl. Artif. Intell. 249–260 (1990)

    Google Scholar 

  22. Kohonen, T.: Self-Organizing Maps. Springer, Berlin, Heidelberg (2001)

    Book  MATH  Google Scholar 

  23. Bodyanskiy, Y.V., Kokshenev. I., Kolodyazhniy. V.: An adaptive learning algorithm for a neo fuzzy neuron. In: Wagenknecht, M., Hampel, R. (eds.) Proceedings of the 3rd Conference of the European Society for Fuzzy Logic and Technology, Zittau, Germany, September 10–12, 2003, pp. 375–379. University of Applied Sciences at Zittau/Görlitz, Germany (2003)

    Google Scholar 

  24. Goodwin G.C., Ramadge P.J., Caines P.E.: Discrete time stochastic adaptive control. SIAM J. Control Optim. 19, 829–853 (1981) https://doi.org/10.1137/0319052

  25. Kaczmarz, S.: Approximate solution of systems of linear equations. Int. J. Control 57, 1269–1271 (1993). https://doi.org/10.1080/00207179308934446

    Article  MathSciNet  MATH  Google Scholar 

  26. Arora, S., Bansal, R., Singhal, V.: Malware detection techniques: a brief survey. In: International Conference on Inventive Communication and Computational Technologies (ICICCT) (2018)

    Google Scholar 

  27. Gharakheili, V., van Beest, E.P.C., Havinga, P.J.M., Hancke, G.P.: A survey of intrusion detection systems using machine learning: techniques, applications, and challenges. J. Inf. Secur. Appl. 50, 102390 (2020)

    Google Scholar 

  28. Islam, S.M., Islam, R., Islam, M.N., Hossain, M.A.: Detection of computer viruses using machine learning: a review. Inte. J. Comput. Sci. Inf. Secur. (IJCSIS) 17(3), 97–105 (2019)

    Google Scholar 

  29. Zhang, X., Yang, J., Zhang, Y., Huang, K.: Malware detection using recurrent neural networks with long short-term memory. IEEE Access 8, 128642–128651 (2020)

    Google Scholar 

  30. Kwon, O., Ryu, W.J., Lee, K.H., Kim, D.: Malware classification using long short-term memory recurrent neural network. J. Intell. & Fuzzy Syst. 36(1), 677–684 (2019)

    Google Scholar 

  31. Lin, Y., Zhu, X., Xie, Y.: Malware detection using deep learning with long short-term memory. J. Ambient Intell. Humaniz. Comput. 10(8), 3033–3043 (2019)

    Google Scholar 

  32. Alhusain, A., Singh, P., Sivakumar, P.: Convolutional neural networks for malware detection: a survey. IEEE Access 9, 53137–53150 (2021)

    Google Scholar 

  33. https://practicalsecurityanalytics.com/pe-malware-machine-learning-dataset/

  34. Bensaoud, A., Abudawaood, N., Kalita, J.: Classifying Malware Images with Convolutional Neural Network Models. Int. J. Netw. Secur. 22 (2020)

    Google Scholar 

  35. Andrade, E.O., Viterbo, J., Vasconcelos, C.N., Guérin, J., Bernardini, F.C.: A model based on LSTM neural networks to identify five different types of malware. Procedia Comput. Sci. 159, 182–191 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevgeniy Bodyanskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bodyanskiy, Y., Chala, O., Filatov, V., Pliss, I. (2023). Neo-Fuzzy Radial-Basis Function Neural Network and Its Combined Learning. In: Zgurovsky, M., Pankratova, N. (eds) System Analysis and Artificial Intelligence . Studies in Computational Intelligence, vol 1107. Springer, Cham. https://doi.org/10.1007/978-3-031-37450-0_19

Download citation

Publish with us

Policies and ethics