Skip to main content

Robust State Estimation for Linear Time-Varying Systems Using High-Order Sliding-Modes Observers

  • Chapter
  • First Online:
Sliding-Mode Control and Variable-Structure Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 490))

  • 486 Accesses

Abstract

This chapter presents two algorithms for state estimation of linear time-varying systems affected by unknown inputs. The chapter is divided into two parts. The first part presents an observer for the class of strongly observable linear time-varying systems with unknown inputs. The proposed observer uses a cascade structure to guarantee the correct state reconstruction despite bounded unknown inputs and system instability. The second part of this chapter presents a finite-time observer that exploits the structural properties of the system through a linear operator. The particular design of this observer allows for avoiding the use of a cascade structure, providing with reduced complexity an exact estimate of the states after a finite transient time, even in the presence of possible instability of the system and the effects of bounded unknown inputs.

The material in this Chapter is presented with the permissions of IEEE and John Wiley and Sons:

©2022 John Wiley and Sons. Reprinted with permission from Galván-Guerra, R., Fridman, L., and Dávila, J. (2017) High-order sliding-mode observer for linear time-varying systems with unknown inputs. Int. J. Robust. Nonlinear Control, 27: 2338–2356. https://doi.org/10.1002/rnc.3698.

©2022 IEEE. Reprinted with permission from J. Dávila, M. Tranninger and L. Fridman, “Finite-Time State Observer for a Class of Linear Time-Varying Systems With Unknown Inputs,” in IEEE Transactions on Automatic Control, vol. 67, no. 6, pp. 3149–3156, June 2022, https://doi.org/10.1109/TAC.2021.3096863.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Here we can use any left generalized inverse \(\left[ K(t)\mathcal {\tilde{O}}_{(\tilde{{A}},C),l_{o}}\right] ^{+}\), such that

    $$ \left[ K(t)\mathcal {\tilde{O}}_{(\tilde{{A}},C),l_{o}}\right] ^{+}K(t)\mathcal{{\tilde{O}}}_{(\tilde{{A}},C),l_{o}}=I; $$

    and it can be computed using any methodology (see, e.g., [26], for more details about generalized inverses and its computation).

References

  1. Angulo, M.T., Fridman, L., Moreno, J.A.: Output-feedback finite-time stabilization of disturbed feedback linearizable nonlinear systems. Automatica 49(9), 2767–2773 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbot, J., Floquet, T.: A canonical form for the design of unknown input sliding mode observers. In: Edwards, C., Fossas, E., Fridman, L. (eds.) Advances in variable structure and sliding mode control. Lecture Notes in Control and Information Science, pp. 271–292. Springer Verlag, Berlin (2006)

    Google Scholar 

  3. Bejarano, F.J., Fridman, L., Poznyak, A.: Exact state estimation for linear systems with unknown inputs based on hierarchical super-twisting algorithm. Int. J. Robust Nonlinear Control 17(18), 1734–1753 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bejarano, F.J., Pisano, A., Usai, E.: Finite-time converging jump observer for switched linear systems with unknown inputs. Nonlinear Anal. Hybrid Syst. 5(2), 174–188 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cruz-Zavala, E., Moreno, J.A., Fridman, L.M.: Uniform robust exact differentiator. IEEE Trans. Autom. Control 56(11), 2727–2733 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Davila, J., Fridman, L., Levant, A.: Second-order sliding-mode observer for mechanical systems. IEEE Trans. Autom. Control 50(11), 1785–1789 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Davila, J., Tranninger, M., Fridman, L.: Finite-time state-observer for a class of linear time-varying systems with unknown inputs. IEEE Trans. Autom. Control 1–1 (2021)

    Google Scholar 

  8. Efimov, D., Cieslak, J., Zolghadri, A., Henry, D.: Actuator fault detection in aircraft systems: Oscillatory failure case study. Ann. Rev. Control 37(1), 180–190 (2013)

    Article  Google Scholar 

  9. Filippov, A.F.: Differential Equations with Discontinuos Right-hand Sides. Kluwer Academic Publishers, Dordrecht, The Netherlands (1988)

    Book  Google Scholar 

  10. Fridman, L., Levant, A., Davila, J.: Observation of linear systems with unknown inputs via high-order sliding-modes. Int. J. Syst. Sci. 38(10), 773–791 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fujimori, A., Ljung, L.: Parameter estimation of polytopic models for a linear parameter varying aircraft system. Trans. Japan Soc. Aeronaut. Space Sci. 49(165), 129–136 (2006)

    Article  Google Scholar 

  12. Galván-Guerra, R., Fridman, L., Dávila, J.: High-order sliding-mode observer for linear time-varying systems with unknown inputs. Int. J. Robust Nonlinear Control 27(14), 2338–2356 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hashimoto, H., Utkin, V., Xu, J.X., Suzuki, H., Harashima, F.: VSS observer for linear time varying system. In: Procedings of IECON’90, pp. 34–39. Pacific Grove CA (1990)

    Google Scholar 

  14. Hautus, M.L.J., Silverman, L.M.: System structure and singular control. Linear Algebra Appl. 50, 369–402 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hautus, M.L.: Strong detectability and observers. Linear Algebra Appl. 50, 353–368 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ilchmann, A., Mueller, M.: Time-varying linear systems: Relative degree and normal form. IEEE Trans. Autom. Control 52(5), 840–851 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kratz, W., Liebscher, D.: A local characterization of observability. Linear Algebra Appl. 269(13), 115–137 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kratz, W.: Characterization of strong observability and construction of an observer. Linear Algebra Appl. 221, 31–40 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Levant, A.: High-order sliding modes: differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MATH  Google Scholar 

  20. Liebscher, D.: Strong observability of time-dependent linear systems. In: Schmidt, W.H., Heier, K., Bittner, L., Bulirsch, R. (eds.) Variational Calculus, Optimal Control and Applications, number 124 in International Series of Numerical Mathematics, chapter 27, pp. 175–182. Birkhäuser, Basel (1998)

    Chapter  Google Scholar 

  21. Menold, P.H., Findeisen, R., Allgöwer, F.: Finite time convergent observers for linear time-varying systems. In: Proceedings of the 11th Mediterranean Conference on Control and Automation, pp. 74–78 (2003)

    Google Scholar 

  22. Molinari, B.P.: A strong controllability and observability in linear multivariable control. IEEE Trans. Autom. Control 21(5), 761–764 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moreno, J.A.: Arbitrary-order fixed-time differentiators. IEEE Trans. Autom. Control 67(3), 1543–1549 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nguyen, C.C.: Canonical transformation for a class of time-varying multivariable systems. Int. J. Control 43(4), 1061–1074 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Niederwieser, H., Koch, S., Reichhartinger, M.: A generalization of Ackermann’s formula for the design of continuous and discontinuous observers. In: 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 6930–6935 (2019)

    Google Scholar 

  26. Poznyak, A.: Advanced Mathematical Tools for Control Engineers-Volume 1: Deterministic Techniques. Elsevier, Amsterdam-Boston (2008)

    Google Scholar 

  27. Ravi, R., Pascoal, A.M., Khargonekar, P.P.: Normalized coprime factorizations for linear time-varying systems. Syst. Control Lett. 18(6), 455–465 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ríos, H., Kamal, S., Fridman, L.M., Zolghadri, A.: Fault tolerant control allocation via continuous integral sliding-modes: A hosm-observer approach. Automatica 51, 318–325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ríos, H., Teel, A.R.: A hybrid fixed-time observer for state estimation of linear systems. Automatica 87, 103–112 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wilson, J.R.: Linear System Theory. Prentice Hall (1993)

    Google Scholar 

  31. Silverman, L.: Realization of linear dynamical systems. IEEE Trans. Autom. Control 16(6), 554–567 (1971)

    Article  MathSciNet  Google Scholar 

  32. Gary, L.T.: Aircraftstability and control data. Technical report, National Aeronautics and Space Administration (1969)

    Google Scholar 

  33. Tranninger, M., Zhuk, S., Steinberger, M., Fridman, L.M., Horn, M.: Sliding mode tangent space observer for LTV systems with unknown inputs. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 6760–6765 (2018)

    Google Scholar 

  34. Trentelman, H.L., Stoorvogel, A.A., Hautus, M.: Control Theory for Linear Systems. Springer-Verlag, London, Great Britain (2001)

    Book  MATH  Google Scholar 

  35. Trumpf, J.: Observers for linear time-varying systems. Linear Algebra Appl. 425(2–3), 303–312 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Willems, J.C.: Deterministic least squares filtering. J. Econ. 118(1–2), 341–373 (2004). Contributions to econometrics, time series analysis, and systems identification: a Festschrift in honor of Manfred Deistler

    Google Scholar 

  37. Wolovich, W.: On the stabilization of controllable systems. IEEE Trans. Autom. Control 13(5), 569–572 (1968)

    Article  MathSciNet  Google Scholar 

  38. Zattoni, E., Perdon, A.M., Conte, G.: Structural Methods in the Study of Complex Systems. Number 482 in Lecture Notes in Control and Information Science. Springer, Switzerland (2020)

    Google Scholar 

  39. Zhang, Q.: Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems. IEEE Trans. Autom. Control 47(3), 525–529 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, Q., Clavel, A.: Adaptive observer with exponential forgetting factor for linear time varying systems. In: Proc. of the 2001 American Control Conference, pp. 3886–3891. Orlando, Florida, USA (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Dávila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dávila, J., Fridman, L., Levant, A. (2023). Robust State Estimation for Linear Time-Varying Systems Using High-Order Sliding-Modes Observers. In: Oliveira, T.R., Fridman, L., Hsu, L. (eds) Sliding-Mode Control and Variable-Structure Systems. Studies in Systems, Decision and Control, vol 490. Springer, Cham. https://doi.org/10.1007/978-3-031-37089-2_6

Download citation

Publish with us

Policies and ethics