Skip to main content

Neural Network Based Active Fault Diagnosis with a Statistical Test

  • Conference paper
  • First Online:
Advanced, Contemporary Control (PCC 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 708))

Included in the following conference series:

  • 170 Accesses

Abstract

The paper focuses on designing an active fault detector (AFD) for a non-linear stochastic system subject to abrupt faults. The neural network (NN) based models of the monitored system and their prediction error uncertainties are identified using historical input-output data obtained from the system under fault-free and all considered faulty conditions. The fault detector is based on a multiple hypothesis CUSUM-like statistical test that uses the identified NN models. The quality of decisions provided by such a detector is improved by a closed loop input signal generator. The input signal generator is represented by another NN and it is designed using a reinforcement learning method. The proposed AFD is illustrated by means of a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that \(\textbf{y}_{i:j}\) denotes the sequence of \(\textbf{y}_{k}\) from the time step i up to the time step j.

References

  1. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-47943-8

    Book  MATH  Google Scholar 

  2. Campbell, S.L., Nikoukhah, R.: Auxiliary Signal Design for Failure Detection. Princeton University Press, Princeton, NJ, USA (2004)

    Book  MATH  Google Scholar 

  3. Golubev, G., Safarian, M.: A multiple hypothesis testing approach to detection changes in distribution. Math. Methods Statist. 28(2), 155–167 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Haroutunian, E.A., Hakobyan, P.M.: Most powerful test for multiple hypotheses. In: Proceedings of the 10th International Conference on Computer Science and Information Technology, pp. 1–3. Yerevan, Armenia (2015)

    Google Scholar 

  5. Haykin, S.: Neural networks: a comprehensive foundation. Prentice Hall (1999)

    Google Scholar 

  6. Isermann, R.: Fault-Diagnosis Applications. Springer, Heidelberg, Germany (2011). https://doi.org/10.1007/978-3-642-12767-0

    Book  MATH  Google Scholar 

  7. Kerestecioğlu, F.: Change Detection and Input Design in Dynamical Systems. Research Studies Press, Taunton, England (1993)

    MATH  Google Scholar 

  8. Král, L., Punčochář, I.: Policy search for active fault diagnosis with partially observable state. Adapt. Control Signal Process. 36(9), 2190–2216 (2022)

    Article  MathSciNet  Google Scholar 

  9. Marseglia, G.R., Scott, J.K., Magni, L., Braatz, R.D., Raimondo, D.M.: A hybrid stochastic-deterministic approach for active fault diagnosis using scenario optimization. In: Proceedings of the 19th IFAC World Congress, pp. 1102–1107. Cape Town, South Africa (2014)

    Google Scholar 

  10. Niemann, H.H.: A model-based approach to fault-tolerant control. Int. J. Appl. Math. Comput. Sci. 22(1), 67–86 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nørgaard, M., Ravn, O., Poulsen, N.K., Hansen, L.K.: Neural Networks For Modelling And Control Of Dynamic Systems: A Practitioner’s Handbook (2000)

    Google Scholar 

  12. Oskiper, T., Poor, H.V.: Matrix CUSUM: a recursive multi-hypothesis change detection algorithm. In: Proceedings of the 2001 IEEE International Symposium on Information Theory, p. 19. Washington, DC, USA (2001)

    Google Scholar 

  13. Patton, R.J., Frank, P.M., Clark, R.N.: Issues of Fault Diagnosis for Dynamic Systems, 1st edn. Springer-Verlag, London, London, United Kingdom (2000). https://doi.org/10.1007/978-1-4471-3644-6

    Book  Google Scholar 

  14. Poulsen, N.K., Niemann, H.H.: Active fault diagnosis based on stochastic tests. Int. J. Appl. Math. Comput. Sci. 18(4), 487–496 (2008)

    Article  MATH  Google Scholar 

  15. Punčochář, I., Šimandl, M.: On infinite horizon active fault diagnosis for a class of non-linear non-Gaussian systems. Int. J. Appl. Math. Comput. Sci. 24(4), 795–807 (2014)

    Google Scholar 

  16. Raimondo, D.M., Marseglia, G.R., Braatz, R.D., Scott, J.K.: Closed-loop input design for guaranteed fault diagnosis using set-valued observers. Automatica 74, 107–117 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, X.J.: Auxiliary Signal Design in Fault Detection and Diagnosis. Springer-Verlag, Berlin, Germany (1989). https://doi.org/10.1007/BFb0009313

    Book  MATH  Google Scholar 

Download references

The work was supported by the Czech Science Foundation under grant 22-11101S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Punčochář .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Punčochář, I., Král, L. (2023). Neural Network Based Active Fault Diagnosis with a Statistical Test. In: Pawelczyk, M., Bismor, D., Ogonowski, S., Kacprzyk, J. (eds) Advanced, Contemporary Control. PCC 2023. Lecture Notes in Networks and Systems, vol 708. Springer, Cham. https://doi.org/10.1007/978-3-031-35170-9_21

Download citation

Publish with us

Policies and ethics