Skip to main content

A Presentation of Control Theory Applied to the Design of Controllable Segmented Gas Foil Bearings

  • Conference paper
  • First Online:
Advances in Active Bearings in Rotating Machinery (ABROM 2022)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 141 Accesses

Abstract

With industry diverging away from the use of oil in the hopes of a more environmentally friendly production, the use of Gas Foil Bearings (GFBs) can facilitate an oil-free alternative for high-speed rotating light machinery. Currently, their application is, however, limited by their low load-bearing capability and low vibration damping. Hybridization has the possibility to mitigate these limitations. The system presented in this paper demonstrates the increased system capabilities through passive and active Hybrid Gas Foil Bearings (HGFB) with radial gas injection. The non-linear differential equations comprising the system, pressure states, foil deflections, rotor movements, and actuator position, are solved simultaneously with and without control feedback. The presented results comprise unbalance response waterfall diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oh, K.P., Rohde, S.M.: A theoretical investigation of the multileaf journal bearing. J. Appl. Mech. 43, 237–242 (1976)

    Article  MATH  Google Scholar 

  2. Heshmat, H., Walowit, J.A., Pinkus, O.: Analysis of gas-lubricated foil journal bearings. J. Lubr. Technol. 105, 647–655 (1983)

    Article  Google Scholar 

  3. Peng, J., Carpino, M.: Calculation of stiffness and damping coefficients for elastically supported gas foil bearings. J. Tribol. 115, 20–27 (1993)

    Article  Google Scholar 

  4. Schiffmann, J., Spakovszky, Z.S.: Foil bearing design guidelines for improved stability. J. Tribol. 135, 12 (2012)

    Google Scholar 

  5. Pattnayak, M., Ganai, P., Pandey, R., Dutt, J., Fillon, M.: An overview and assessment on aerodynamic journal bearings with important findings and scope for explorations. Tribol. Int. 174, 107778 (2022)

    Article  Google Scholar 

  6. Adolfo, D., Ertas, B.: Dynamic characterization of a novel externally pressurized compliantly damped gas-lubricated bearing with hermetically sealed squeeze film damper modules. In: ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, p. V07BT34A050 (2018)

    Google Scholar 

  7. Ertas, B., Adolfo, D.: Compliant hybrid gas bearing using modular hermetically sealed squeeze film dampers. J. Eng. Gas Turbines Power 141, 08 (2018)

    Google Scholar 

  8. Feng, K., Cao, Y., Yu, K., Hanqing, G., Wu, Y., Guo, Z.: Characterization of a controllable stiffness foil bearing with shape memory alloy springs. Tribol. Int. 136, 03 (2019)

    Article  Google Scholar 

  9. Yazdi, B.Z., Kim, D.: Rotordynamic performance of hybrid air foil bearings with regulated hydrostatic injection. In: Journal of Engineering for Gas Turbines and Power-transactions of the ASME, p. V07AT34A012 (2017)

    Google Scholar 

  10. Hanqing, G., Feng, K., Cao, Y.-L., Huang, M., Wu, Y.-H., Guo, Z.: Experimental and theoretical investigation of rotordynamic characteristics of a rigid rotor supported by an active bump-type foil bearing. J. Sound Vib. 466, 115049 (2019)

    Google Scholar 

  11. Ha, D., Stolarski, T., Yoshimoto, S.: An aerodynamic bearing with adjustable geometry and self-lifting capacity. part 1: self-lift capacity by squeeze film. In: Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology - PROC INST MECH ENG J-J ENG TR, vol. 219, pp. 33–39 (2005)

    Google Scholar 

  12. Belforte, G., Raparelli, T., Viktorov, V., Trivella, A.: Discharge coefficients of orifice-type restrictor for aerostatic bearings. Tribol. Int. 40, 512–521 (2007)

    Google Scholar 

  13. Chang, S., Chan, C., Jeng, Y.: Numerical analysis of discharge coefficients in aerostatic bearings with orifice-type restrictors. Tribol. Int. 90, 157–163 (2015)

    Article  Google Scholar 

  14. Gao, S., Cheng, K., Chen, S., Ding, H., Fu, H.: CFD based investigation on influence of orifice chamber shapes for the design of aerostatic thrust bearings at ultra-high speed spindles. Tribol. Int. 92, 12 (2015)

    Article  Google Scholar 

  15. Renn, J.-C., Hsiao, C.-H.: Experimental and CFD study on the mass flow-rate characteristic of gas through orifice-type restrictor in aerostatic bearings. Tribol. Int. 37, 309–315 (2004)

    Article  Google Scholar 

  16. Rowe, W.B.: Basic Flow Theory 1st(ed.), p. 25-48. Elsevier (2012)

    Google Scholar 

  17. Zhou, Y., Chen, X., Chen, H.: A hybrid approach to the numerical solution of air flow field in aerostatic thrust bearings. Tribol. Int. 102, 04 (2016)

    Article  Google Scholar 

  18. Larsen, J., Varela, A.C., Santos, I.: Numerical and experimental investigation of bump foil mechanical behaviour. Tribol. Int. 74, 46–56 (2014)

    Article  Google Scholar 

  19. Larsen, J., Santos, I., Hansen, A.: Experimental and theoretical analysis of a rigid rotor supported by air foil bearings. Mech. Ind. 09 (2014)

    Google Scholar 

  20. Larsen, J., Santos, I., von Osmanski, S.: Stability of rigid rotors supported by air foil bearings: comparison of two fundamental approaches. J. Sound Vib. 381, 07 (2016)

    Article  Google Scholar 

  21. Larsen, J., Nielsen, B., Santos, I.: On the numerical simulation of nonlinear transient behavior of compliant air foil bearings. In: Proceedings of the 11th International Conference on Schwingungen Rotierenden Maschinen, pp. 1–13 (2015)

    Google Scholar 

  22. Larsen, J., Santos, I.: On the nonlinear steady-state response of rigid rotors supported by air foil bearings - theory and experiments. J. Sound Vib. 346, 03 (2015)

    Article  Google Scholar 

  23. von Osmanski, S., Larsen, J., Santos, I.: A fully coupled air foil bearing model considering friction - theory & experiment. J. Sound Vib. 400, 660–679 (2017)

    Article  Google Scholar 

  24. Heinemann, S.T., Jensen, J.W., von Osmanski, S., Santos, I.F.: Numerical modelling of compliant foil structure in gas foil bearings: comparison of four top foil models with and without radial injection. J. Sound Vib. 117513 (2022)

    Google Scholar 

  25. von Osmanski, S., Santos, I.: Gas foil bearings with radial injection: multi-domain stability analysis and unbalance response. J. Sound Vib. 508, 116177 (2021)

    Article  Google Scholar 

  26. Heinemann, S.: Design of controllable segmented foil bearings based on multi-physics modelling techniques, Master’s Thesis (2020)

    Google Scholar 

  27. Larsen, J., Santos, I.: Efficient solution of the non-linear reynolds equation for compressible fluid using the finite element method. J. Braz. Soc. Mech. Sci. Eng. 37, 07 (2014)

    Google Scholar 

  28. von Osmanski, S., Larsen, J., Santos, I.: Modelling of compliant-type gas bearings: a numerical recipe. In: 13th International Conference on Dynamics of Rotating Machinery (SIRM 2019), pp. 13–27 (2019)

    Google Scholar 

  29. Hestmat, H., Walowit, J.A.: Analysis of gas lubricated compliant trust bearings. J. Lubr. Technol. 105(4), 638–646 (1983)

    Article  Google Scholar 

  30. Hestmat, H., Walowit, J.A.: Analysis of gas lubricated foil bearings. J. Lubr. Technol. 105(4), 647–655 (1983)

    Article  Google Scholar 

  31. Inman, D.J.: Engineering Vibration, 4th edn. Pearson, London (2014)

    Google Scholar 

  32. Pierart, F., Santos, I.: Active lubrication applied to radial gas journal bearings. part 2: modelling improvement and experimental validation. Tribol. Int. 96, 12 (2015)

    Google Scholar 

  33. Annon. IEEE standard on piezoelectricity. ANSI/IEEE Std 176-19871 (1988)

    Google Scholar 

  34. Christensen, R., Santos, I.: Design of active controlled rotor-blade systems based on time-variant modal analysis. J. Sound Vib. 280(3), 863–882 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Christensen, R., Santos, I.: Modal controllability and observability of bladed disks and their dependency on the angular velocity. J. Vib. Control 11(6), 801–828 (2005)

    Article  MATH  Google Scholar 

  36. Hendricks, E., Jannerup, O., Sørensen, P.H.: Linear Systems control, Deterministic and Stochastic Methods. Springer-Verlag, Berlin (2008)

    MATH  Google Scholar 

  37. Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J.: Concepts and Applications of Finite Element Analysis, 4th edn. Wiley, Hoboken (2001)

    Google Scholar 

  38. Dennis, J.J.E., Schnabel, R.B.: Numerical methods for unconstrained optimization and nonlinear equations. Society for Industrial and Applied Mathematics, SIAM (1983)

    Google Scholar 

  39. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical solution of initial-value problems in differential-algebraic equations. Society for Industrial and Applied Mathematics, SIAM (1996)

    Google Scholar 

  40. Morosi, S., Santos, I.: On the modelling of hybrid aerostatic-gas journal bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 225, pp. 641–653 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilmar Ferreira Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jensen, J.W., Santos, I.F. (2023). A Presentation of Control Theory Applied to the Design of Controllable Segmented Gas Foil Bearings. In: Chasalevris, A., Proppe, C. (eds) Advances in Active Bearings in Rotating Machinery. ABROM 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-32394-2_3

Download citation

Publish with us

Policies and ethics