Skip to main content

Mathematical Modeling of the Antenna Devices of the Microwave Range

  • Conference paper
  • First Online:
4th International Conference on Artificial Intelligence and Applied Mathematics in Engineering (ICAIAME 2022)

Abstract

In the work, mathematical modeling of antenna devices in the microwave range was carried out. A method is proposed for calculating the fields of aperture antennas in the time domain, in which the antiderivative impulse response of the antenna as a function of the observation point can in many cases be expressed in elementary functions in the entire half-space in front of the aperture. On its basis, the characteristic features of pulsed fields of aperture antennas of various shapes for different observation points are shown. Flyby diagrams of a circular aperture are obtained at various flyby radius, as well as the amplitude profile of the electromagnetic field of a circular aperture along the electric field strength vector at various distances, the amplitude profile of the electromagnetic field of circular apertures corresponding to the successive addition of Fresnel zones along the electric field strength vector, longitudinal amplitude profiles of small and large circular apertures and the amplitude profile of the electromagnetic field of the annular aperture corresponding to two adjacent Fresnel zones along the electric field strength vector. The proposed calculation method is generalized for field distributions decreasing towards the edges of the aperture. The proposed modeling method is generalized for rectangular, circular and annular apertures. It is shown that for a monochromatic signal when measuring the radiation pattern with a receiving aperture antenna at a finite distance, the measurement error is minimized when the probe size is about half the size of the antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Islamov, I.J., Ismibayli, E.G., Gaziyev, Y.G., Ahmadova, S.R., Abdullayev, R.: Modeling of the electromagnetic feld of a rectangular waveguide with side holes. Prog. Electromagn. Res. 81, 127–132 (2019)

    Article  Google Scholar 

  2. Islamov, I.J., Shukurov, N.M., Abdullayev, R.Sh., Hashimov, Kh.Kh., Khalilov, A.I.: Diffraction of electromagnetic waves of rectangular waveguides with a longitudinal. In: IEEE Conference 2020 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). INSPEC Accession Number: 19806145 (2020)

    Google Scholar 

  3. Khalilov, A.I., Islamov, I.J., Hunbataliyev, E.Z., Shukurov, N.M., Abdullayev, R.Sh.: Modeling microwave signals transmitted through a rectangular waveguide. In: IEEE Conference 2020 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). INSPEC Accession Number: 19806152 (2020)

    Google Scholar 

  4. Islamov, I.J., Ismibayli, E.G.: Experimental study of characteristics of microwave devices transition from rectangular waveguide to the megaphone. IFAC-PapersOnLine. 51(30), 477–479 (2018)

    Article  Google Scholar 

  5. Ismibayli, E.G., Islamov, I.J.: New approach to definition of potential of the electric field created by set distribution in space of electric charges. IFAC-PapersOnLine. 51(30), 410–414 (2018)

    Article  Google Scholar 

  6. Islamov, I.J., Ismibayli, E.G., Hasanov, M.H., Gaziyev, Y.G., Abdullayev, R.: Electrodynamics characteristics of the no resonant system of transverse slits located in the wide wall of a rectangular waveguide. Prog. Electromagnet. Res. Lett. 80, 23–29 (2018)

    Article  Google Scholar 

  7. Islamov, I.J., Ismibayli, E.G., Hasanov, M.H., Gaziyev, Y.G., Ahmadova, S.R., Abdullayev, R.: Calculation of the electromagnetic field of a rectangular waveguide with chiral medium. Prog. Electromagnet. Res. 84, 97–114 (2019)

    Article  Google Scholar 

  8. Islamov, I.J., Hasanov, M.H., Abbasov, M.H.: Simulation of electrodynamic processes in the cylindrical-rectangular microwave waveguide systems transmitting information. In: Aliev, R.A., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Babanli, M., Sadikoglu, F.M. (eds.) ICSCCW 2021. LNNS, vol. 362, pp. 246–253. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-92127-9_35

    Chapter  Google Scholar 

  9. Islamov, I.J., Hunbataliyev, E.Z., Zulfugarli, A.E.: Numerical simulation of characteristics of propagation of symmetric waves in microwave circular shielded waveguide with a radially inhomogeneous dielectric filling. Cambridge Univ. Press: Int. J. Microw. Wireless Technol. 14(6), 761–767 (2021)

    Google Scholar 

  10. Islamov, I.J., Hunbataliyev, E.Z., Abdullayev, R.Sh., Shukurov, N.M., Hashimov, Kh.Kh.: Modelling of a microwave rectangular waveguide with a dielectric layer and longitudinal slots. In: International Symposium for Production Research, Antalya, pp. 550–558 (2021)

    Google Scholar 

  11. Abdulrahman, S.M.A., Anthony, E.S., Konstanty, S.B., Amin, A.: Flexible meander-line antenna array for wearable electromagnetic head imaging. IEEE Trans. Antennas Propag. 69(7), 4206–4211 (2021)

    Article  Google Scholar 

  12. Mohammad, M.F.: A wideband antenna using high gain fractal planar monopole antenna array for RF energy scavenging. Int. J. Antennas Propag. 2020, 3489323 (2020)

    Google Scholar 

  13. Pinuela, M., Mitcheson, P.D., Lucyszyn, S.: Ambient RF energy harvesting in urban and semi-urban environments. IEEE Trans. Microw. Theory Tech. 61(7), 2715–2726 (2013)

    Article  Google Scholar 

  14. Zhou, M., Shojaei Baghini, M., Kumar, G.: Broadband bent triangular omnidirectional antenna for RF energy harvesting. IEEE Antennas Wirel. Propag. Lett. 15, 36–39 (2016)

    Google Scholar 

  15. Yi-Ming, Z., Shuai, Z., Guangwei, Y., Gert, F.P.: A wideband filtering antenna array with harmonic suppression. IEEE Trans. Microw. Theory Tech. 68(10), 4327–4339 (2020)

    Article  Google Scholar 

  16. Zhao, Y., Guangjun, W., Wei, H., Daniele, I., Yongjun, H., Jian, L.: Microwave airy beam generation with microstrip patch antenna array. IEEE Trans. Antennas Propag. 69(4), 2290–2301 (2020)

    Google Scholar 

  17. Ao, L., Kwai-Man, L.: Single-layer wideband end-fire dual-polarized antenna array for device-to-device communication in 5G wireless systems. IEEE Trans. Veh. Technol. 69(5), 5142–5150 (2020)

    Article  Google Scholar 

  18. Botao, F., Liangying, L., Kwok, L.C., Yansheng, L.: Wideband widebeam dual circularly polarized magnetoelectric dipole antenna/array with meta-columns loading for 5G and beyond. IEEE Trans. Antennas Propag. 69(1), 219–228 (2020)

    Google Scholar 

  19. Muhammad, M.H., Muzhair, H., Adnan, A.K., Imran, R., Farooq, A.B.: Dual-band B-shaped antenna array for satellite applications. Int. J. Microw. Wirel. Technol. 13(8), 851–858 (2021)

    Article  Google Scholar 

  20. Yuchen, M., Junhong, W., Zheng, L., Yujian, L., Meie, C., Zhan, Z.: Planar annular leaky-wave antenna array with conical beam. IEEE Trans. Antennas Propag. 68(7), 5405–5414 (2020)

    Article  Google Scholar 

  21. Avishek, D., Durbadal, M., Rajib, K.: An optimal circular antenna array design considering the mutual coupling employing ant lion optimization. Int. J. Microw. Wirel. Technol. 13(2), 164–172 (2021)

    Article  Google Scholar 

  22. Kai, G., Xiaoxiang, D., Li, G., Yanwen, Z., Zaiping, N.: A broadband dual circularly polarized shared-aperture antenna array using characteristic mode analysis for 5G applications. Int. J. RF Microwave Comput. Aided Eng. 31(3), 234–243 (2021)

    Google Scholar 

  23. Pooja, P., Aneesh, R. K., Gopika, R., Chinmoy, S.: Quad antenna array design for microwave energy harvesting. In: International Conference on Wireless and Optical Communications (WOCC) (2021)

    Google Scholar 

  24. Daniel, C., Stavros, V., Jeffrey, A.N.: Imageless shape detection using a millimeter-wave dynamic antenna array and noise illumination. IEEE Trans. Microw. Theory Tech. 70(1), 758–765 (2022)

    Article  Google Scholar 

  25. Yusifbayli, N., Guliyev, H., Aliyev, A.: Voltage Control System for Electrical Networks Based on Fuzzy Sets. In: Aliev, R.A., Yusupbekov, N.R., Kacprzyk, J., Pedrycz, W., Sadikoglu, F.M. (eds.) WCIS 2020. AISC, vol. 1323, pp. 55–63. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68004-6_8

    Chapter  Google Scholar 

  26. Ibrahimov, B.G.: Research and estimation characteristics of terminal equipiment a link multiservice communication networks. Autom. Control. Comput. Sci. 46(6), 54–59 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islam J. Islamov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Islamov, I.J., Hasanov, M.H., Hunbataliyev, E.Z. (2023). Mathematical Modeling of the Antenna Devices of the Microwave Range. In: Hemanth, D.J., Yigit, T., Kose, U., Guvenc, U. (eds) 4th International Conference on Artificial Intelligence and Applied Mathematics in Engineering. ICAIAME 2022. Engineering Cyber-Physical Systems and Critical Infrastructures, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-031-31956-3_14

Download citation

Publish with us

Policies and ethics