Skip to main content

Machine Learning Model for Student Drop-Out Prediction Based on Student Engagement

  • Conference paper
  • First Online:
New Technologies, Development and Application VI (NT 2023)

Abstract

Nowadays, the issue of student drop-out is addressed not only through the prism of pedagogy, but also by technological practices. In this paper, we demonstrate how a student drop-out could be predicted through a student’s performance using different Machine Learning techniques, i.e., supervised learning and unsupervised learning. The results show that various types of student engagement are essential factors in predicting drop-out and the final ECTS points achievements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Truta, C., Parv, L., Topala, I.: Academic engagement and intention to drop out: levers for sustainability in higher education. Sustainability 10(12), 4637 (2018)

    Article  Google Scholar 

  2. Ruiz, N., Fandos, M.: The role of tutoring in higher education: improving the student’s academic success and professional goals. Revista Internacional de Organizaciones (12), 89–100 (2014)

    Google Scholar 

  3. Hellas, A., et al.: Predicting academic performance: a systematic literature review. In: Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education, pp. 175–199 (2018)

    Google Scholar 

  4. Nicoletti, M.C.: Revisiting the tinto’s theoretical dropout model. High. Educ. Stud. 9(3), 52–64 (2019)

    Article  Google Scholar 

  5. Lei, H., Cui, Y., Zhou, W.: Relationships between student engagement and academic achievement: a meta-analysis. Soc. Behav. Personal. Int. J. 46(3), 517–528 (2018)

    Article  Google Scholar 

  6. Nalli, G., Amendola, D., Smith, S.: Artificial intelligence to improve learning outcomes through online collaborative activities. In: European Conference on e-Learning, vol. 21, pp. 475–479 (2022)

    Google Scholar 

  7. Lee, S., Chung, J.Y.: The machine learning-based dropout early warning system for improving the performance of dropout prediction. Appl. Sci. 9(15), 3093 (2019)

    Article  Google Scholar 

  8. Burgos, C., Campanario, M.L., de la Peña, D., Lara, J.A., Lizcano, D., Martínez, M.A.: Data mining for modeling students’ performance: a tutoring action plan to prevent academic dropout. Comput. Electr. Eng. 66, 541–556 (2018)

    Article  Google Scholar 

  9. Bedregal-Alpaca, N., Cornejo-Aparicio, V., Zárate-Valderrama, J., Yanque-Churo, P.: Classification models for determining types of academic risk and predicting dropout in university students. Int. J. Adv. Comput. Sci. Appl. 11(1), 266–272 (2020)

    Google Scholar 

  10. Oloruntoba, S., Akinode, J.: Student academic performance prediction using support vector machine. Int. J. Eng. Sci. Res. Technol. 6(12), 588–597 (2017)

    Google Scholar 

  11. Cunningham, P., Cord, M., Delany, S.J.: Supervised learning. In: Cord, M., Cunningham, P. (eds.) Machine Learning Techniques for Multimedia. Cognitive Technologies, pp. 21–49. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-75171-7_2

  12. Barlow, H.B.: Unsupervised learning. Neural Comput. 1(3), 295–311 (1989)

    Article  Google Scholar 

  13. Äyrämö, S., Kärkkäinen, T.: Introduction to partitioning-based clustering methods with a robust example. Reports of the Department of Mathematical Information Technology. Series C, Software engineering and computational intelligence, no. 1/2006 (2006)

    Google Scholar 

  14. Leung, Y., Zhang, J.-S., Xu, Z.-B.: Clustering by scale-space filtering. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1396–1410 (2000)

    Article  Google Scholar 

  15. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)

    Article  Google Scholar 

  16. Brezočnik, L., Fister, I., Podgorelec, V.: Swarm intelligence algorithms for feature selection: a review. Appl. Sci. 8(9), 1521 (2018)

    Article  Google Scholar 

  17. Brezočnik, L.: Feature selection for classification using particle swarm optimization. In: IEEE EUROCON 2017–17th International Conference on Smart Technologies, pp. 966–971. IEEE (2017)

    Google Scholar 

  18. Karakatič, S., Fister, I., Fister, D.: Dynamic genotype reduction for narrowing the feature selection search space. In: 2020 IEEE 20th International Symposium on Computational Intelligence and Informatics (CINTI), pp. 35–38. IEEE (2020)

    Google Scholar 

  19. Fister, D., Fister, I., Karakatič, S.: Dynfs: dynamic genotype cutting feature selection algorithm. J. Ambient Intell. Humaniz. Comput. 1–14 (2022)

    Google Scholar 

  20. Karakatič, S.: Evopreprocess—data preprocessing framework with nature-inspired optimization algorithms. Mathematics 8(6), 900 (2020)

    Article  Google Scholar 

  21. Shutaywi, M., Kachouie, N.N.: Silhouette analysis for performance evaluation in machine learning with applications to clustering. Entropy 23(6), 759 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Slovenian Research Agency (Research Core Funding No. P2-0057), and the European Commission (Project Code 2020-1-ES01-KA203-082090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucija Brezočnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brezočnik, L., Nalli, G., De Leone, R., Val, S., Podgorelec, V., Karakatič, S. (2023). Machine Learning Model for Student Drop-Out Prediction Based on Student Engagement. In: Karabegovic, I., Kovačević, A., Mandzuka, S. (eds) New Technologies, Development and Application VI. NT 2023. Lecture Notes in Networks and Systems, vol 687. Springer, Cham. https://doi.org/10.1007/978-3-031-31066-9_54

Download citation

Publish with us

Policies and ethics