Skip to main content

Data in Observational Astronomy

  • Chapter
  • First Online:
Applied Data Science

Part of the book series: Studies in Big Data ((SBD,volume 125))

  • 422 Accesses

Abstract

Astronomy is arguably the first data science. Astronomical observations date back to prehistoric times: early peoples used observations of the Sun, Moon, stars, and planets for navigation, timekeeping, and many other purposes. Ancient cultures catalogued the position and brightness of stars and planets. Throughout history, the sky has been of interest to scientists and non-scientists alike. The data that astronomers use to make discoveries are both the lifeblood of the discipline and a source of wonder and inspiration. This chapter provides an introduction for the non-specialist, describing why astronomers collect data; how data are collected, processed, used and shared, both between astronomers and between astronomers and the public; unique aspects of astronomical data; and future challenges for telling the story of the universe with astronomical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Not included here are observational data acquired using other ‘messengers’ from the cosmos including gravitational waves and elementary particles such as neutrinos (see, e.g., [25]), or the data produced by computer simulations of astrophysical processes, which can be quite extensive (e.g., 5 petabtyes for the simulation described by Heitmann et al. [17]).

  2. 2.

    Such software is often used in producing aesthetic images, for example as part of a press release. See Sect. 4.2 below.

  3. 3.

    https://wwtambassadors.org/tours.

  4. 4.

    An example of sharing a related dataset with the public is a press release describing Hubble Space Telescope observations of the same region of sky, containing interactive images and explanatory text [36].

References

  1. Arcand, K.K., Watzke, M., Rector, T., Levay, Z.G., DePasquale, J., Smarr, O.: Processing color in astronomical imagery. Stud. Media Commun. 1(2) (2013). https://doi.org/10.11114/smc.v1i2.198

  2. Barmby, P., Huang, J.-S., Ashby, M.L.N., Eisenhardt, P.R.M., Fazio, G.G., Willner, S.P., Wright, E.L.: A catalog of mid-infrared sources in the extended Groth strip. Astrophys. J. Suppl. Ser. 177(2), 431–445 (2008). https://doi.org/10.1086/588583

    Article  Google Scholar 

  3. Barmby, P.: Astronomical observations: a guide for allied researchers. Open J. Astrophys. 2(1) (2019). https://doi.org/10.21105/astro.1812.07963

  4. Baron, D.: Machine learning in astronomy: a practical overview. Preprint retrieved from http://arxiv.org/abs/1904.07248 (2019)

  5. Berriman, G.B., IVOA Executive Committee, IVOA Technical Coordination Group, IVOA Community: The international virtual observatory alliance (IVOA) in 2020. Preprint retrieved from http://arxiv.org/abs/2012.05988 (2020)

  6. Borne, K.D.: Astroinformatics: data-oriented astronomy research and education. Earth Sci. Inf. 3(1–2), 5–17 (2010). https://doi.org/10.1007/s12145-010-0055-2

    Article  Google Scholar 

  7. Chrysostomou, A., Taljaard, C., Bolton, R., Ball, L., Breen, S., & van Zyl, A. (2020). Operating the square kilometre array: the world’s most data intensive telescope. In: Observatory Operations: Strategies, Processes, and Systems VIII, vol. 11449, p. 114490X. https://doi.org/10.1117/12.2562120

  8. Collins, K.A., Kielkopf, J.F., Stassun, K.G., Hessman, F.V.: AstroImageJ: image processing and photometric extraction for ultra-precise astronomical light curves. Astron. J. 153(2), 77 (2017). https://doi.org/10.3847/1538-3881/153/2/77

    Article  Google Scholar 

  9. Connolly, A., Scranton, R., Ornduff, T.: Google Sky: a digital view of the night sky. In: Gibbs, M.G., Barnes, J., Manning, J.G., Partridge, B. (eds.) Preparing for the 2009 International Year of Astronomy: A Hands-On Symposium, vol. 400, p. 96 (2008)

    Google Scholar 

  10. Djorgovski, S.G., Williams, R.: Virtual observatory: from concept to implementation. In: Kassim, N.E., Perez, M.R., Junor, W., Henning, P.A. (eds.) From Clark Lake to the Long Wavelength Array: Bill Erickson’s Radio Science: Astronomical Society of the Pacific Conference Series, vol. 345, p. 517 (2005)

    Google Scholar 

  11. English, J.: Canvas and cosmos: Visual art techniques applied to astronomy data. Int. J. Mod. Phys. D 26(4), 1730010 (2017). https://doi.org/10.1142/S0218271817300105

    Article  MathSciNet  Google Scholar 

  12. Fazio, G.G., et al.: The Infrared Array Camera (IRAC) for the Spitzer space telescope. Astrophys. J. Suppl. Ser. 154(1), 10–17 (2004). https://doi.org/10.1086/422843

    Article  Google Scholar 

  13. Collaboration, G.: The Gaia mission. Astron. Astrophys. 595, A1 (2016). https://doi.org/10.1051/0004-6361/201629272

    Article  Google Scholar 

  14. Gaudet, S.: CADC and CANFAR: extending the role of the data centre. In: Science Operations 2015: Science Data Management, vol. 1 (2015). https://doi.org/10.5281/zenodo.34641

  15. Gilda, S., Lower, S., Narayanan, D.: MIRKWOOD: fast and accurate SED modeling using machine learning. Astrophys. J. 916(1), 43 (2021). https://doi.org/10.3847/1538-4357/ac0058

    Article  Google Scholar 

  16. Gwyn, S., Willott, C., Kavelaars, J., Durand, D., Fabbro, S., Bohlender, D., Gaudet, S., Dowler, P., Jenkins, D.: Multi-archive query at the CADC: one-stop shopping for the world’s astronomical data. In: Ballester, P., Ibsen, J., Solar, M., Shortridge, K. (eds.) Astronomical Data Analysis Software and Systems XXVII, vol. 522, p. 85 (2020)

    Google Scholar 

  17. Heitmann, K., Finkel, H., Pope, A., Morozov, V., Frontiere, N., Habib, S., Rangel, E., Uram, T., Korytov, D., Child, H., Flender, S., Insley, J., Rizzi, S.: The outer rim simulation: a path to many-core supercomputers. Astrophys. J. Suppl. Ser. 245(1), 16 (2019). https://doi.org/10.3847/1538-4365/ab4da1

    Article  Google Scholar 

  18. Hudec, R.: Astronomical photographic data archives: recent status. Astron. Nachr. 340(7), 690–697 (2019). https://doi.org/10.1002/asna.201913676

    Article  Google Scholar 

  19. Ivezić, Ž, et al.: LSST: from science drivers to reference design and anticipated data Products. Astrophys. J. 873(2), 111 (2019). https://doi.org/10.3847/1538-4357/ab042c

    Article  Google Scholar 

  20. Joye, W.: SAOImageDS9/SAOImageDS9 v8.0.1. (2019). https://doi.org/10.5281/zenodo.2530958

  21. Li, S. et al.: The vigorous development of data driven astronomy education and public outreach (DAEPO). In: Ros, R.M., García, B., Gullberg, S.R., Moldón J., Rojo, P. (eds.) Education and Heritage in the Era of Big Data in Astronomy, vol. 367, pp. 199–209 (2021). https://doi.org/10.1017/S1743921321000594

  22. Marshall, P.J., Lintott, C.J., Fletcher, L.N.: Ideas for citizen science in astronomy. Ann. Rev. Astron. Astrophys. 53, 247–278 (2015). https://doi.org/10.1146/annurev-astro-081913-035959

    Article  Google Scholar 

  23. Mazzarella, J.M., NED Team: Evolution of the NASA/IPAC Extragalactic Database (NED) into a data mining discovery engine. In: Brescia, M., Djorgovski, S.G., Feigelson, E.D., Longo, G., Cavuoti, S. (eds.) Astroinformatics, vol. 325, pp. 379–384 (2017). https://doi.org/10.1017/S1743921316013132

  24. McGlynn, T., Scollick, K.: SkyView. In: Crabtree, D.R., Hanisch, R.J., Barnes, J. (eds) Astronomical Data Analysis Software and Systems III, vol. 61, p. 34 (1994)

    Google Scholar 

  25. Neronov, A.: Introduction to multi-messenger astronomy. J. Phys. Conf. Ser. 1263, 012001 (2019). https://doi.org/10.1088/1742-6596/1263/1/012001

    Article  Google Scholar 

  26. Nikutta, R., Fitzpatrick, M., Scott, A., Weaver, B.A.: Data Lab-A community science platform. Astron. Comput. 33, 100411 (2020). https://doi.org/10.1016/j.ascom.2020.100411

    Article  Google Scholar 

  27. Novacescu, J., Peek, J.E.G., Weissman, S., Fleming, S.W., Levay, K., Fraser, E.: A model for data citation in astronomical research using Digital Object Identifiers (DOIs). Astrophys. J. Suppl. Ser. 236(1), 20 (2018). https://doi.org/10.3847/1538-4365/aab76a

    Article  Google Scholar 

  28. Ochsenbein, F., Bauer, P., Marcout, J.: The VizieR database of astronomical catalogues. Astron. Astrophys. Suppl. Ser. 143, 23–32 (2000). https://doi.org/10.1051/aas:2000169

    Article  Google Scholar 

  29. Pence, W.D., Chiappetti, L., Page, C.G., Shaw, R.A., Stobie, E.: Definition of the flexible image transport system (FITS), version 3.0. Astron. Astrophys. 524, A42 (2010). https://doi.org/10.1051/0004-6361/201015362

  30. Pepe, A., Goodman, A., Muench, A., Crosas, M., Erdmann, C.: How do astronomers share data? Reliability and persistence of datasets linked in AAS publications and a qualitative study of data practices among US astronomers. PLoS One 9, 104798 (2014). https://doi.org/10.1371/journal.pone.0104798

    Article  Google Scholar 

  31. Pössel, M.: A beginner’s guide to working with astronomical data. Open J. Astrophys. 3(1), 2 (2020). https://doi.org/10.21105/astro.1905.13189

  32. Rector, T.A., Levay, Z.G., Frattare, L.M., Arcand, K.K., Watzke, M.: The aesthetics of astrophysics: how to make appealing color-composite images that convey the science. Publ. Astron. Soc. Pac. 129(975), 058007 (2017). https://doi.org/10.1088/1538-3873/aa5457

    Article  Google Scholar 

  33. Reis, I., Baron, D., Shahaf, S.: Probabilistic random forest: a machine learning algorithm for noisy data sets. Astron. J. 157(1), 16 (2019). https://doi.org/10.3847/1538-3881/aaf101

    Article  Google Scholar 

  34. Rosenfield, P., Fay, J., Gilchrist, R.K., Cui, C., Weigel, A.D., Robitaille, T., Otor, O.J., Goodman, A.: AAS WorldWide telescope: a seamless, cross-platform data visualization engine for astronomy research, education, and democratizing data. Astrophys. J. Suppl. Ser. 236(1), 22 (2018). https://doi.org/10.3847/1538-4365/aab776

    Article  Google Scholar 

  35. Scroggins, M., Boscoe, B.M.: Once FITS, always FITS? Astronomical infrastructure in transition. IEEE Ann. Hist. Comput. 42(2), 42–54 (2020). https://doi.org/10.1109/MAHC.2020.2986745

    Article  Google Scholar 

  36. Space Telescope Science Institute: Hubble pans across heavens to harvest 50,000 evolving galaxies [Press release]. https://hubblesite.org/contents/news-releases/2007/news-2007-06.html (2007)

  37. Sweitzer, J.S.: Strategies for presenting astronomy to the public. Int. Astron. Union Colloq. 105, 336–339 (1990). https://doi.org/10.1017/S025292110008708X

    Article  Google Scholar 

  38. The Astropy Collaboration: The Astropy project: building an open-science project and status of the v2.0 core package. Astron. J. 156(3), 123 (2018). https://doi.org/10.3847/1538-3881/aabc4f

  39. Watson, A.A.: The discovery of Cherenkov radiation and its use in the detection of extensive Air Showers. Nucl. Phys. B Proc.Suppl. 212–213, 13–19 (2011). https://doi.org/10.1016/j.nuclphysbps.2011.03.003

    Article  Google Scholar 

  40. Weekes, T.C., et al.: Veritas: the very energetic radiation imaging telescope array system. Astropart. Phys. 17(2), 221–243 (2002). https://doi.org/10.1016/s0927-6505(01)00152-9

    Article  Google Scholar 

  41. Weijmans, A.-M., Blanton, M., Bolton, A.S., Brownstein, J., Raddick, M.J., Thakar, A.: The challenges of a public data release: behind the scenes of SDSS DR13. In: Molinaro, M., Shortridge, K., Pasian, F. (eds.) Astronomical Data Analysis Software and Systems XXVI, vol. 521, p. 177. (2019)

    Google Scholar 

  42. Wenger, M., Ochsenbein, F., Egret, D., Dubois, P., Bonnarel, F., Borde, S., Genova, F., Jasniewicz, G., Laloë, S., Lesteven, S., Monier, R.: The SIMBAD astronomical database. The CDS reference database for astronomical objects. Astron. Astrophys. Suppl. Ser. 143, 9–22 (2000). https://doi.org/10.1051/aas:2000332

    Article  Google Scholar 

  43. Zwinkels, J.: Light, electromagnetic spectrum. In: Luo, R. (ed.) Encyclopedia of Color Science and Technology, pp. 1–8. Springer, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-642-27851-8_204-1

Download references

Acknowledgements

The authors acknowledge funding support from an NSERC Discovery Grant and Undergraduate Summer Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Barmby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barmby, P., Wong, S. (2023). Data in Observational Astronomy. In: Woolford, D.G., Kotsopoulos, D., Samuels, B. (eds) Applied Data Science. Studies in Big Data, vol 125. Springer, Cham. https://doi.org/10.1007/978-3-031-29937-7_2

Download citation

Publish with us

Policies and ethics