Skip to main content

Digital vs Analog Low Dropout Regulators a Comparative Study

  • Conference paper
  • First Online:
Digital Technologies and Applications (ICDTA 2023)

Abstract

Multiple integrated power regulators with compact size, process extensibility, and low voltage supply are required for an energy efficient system on chip (SoC). Traditional analog low-dropout regulators (ALDOs) may barely achieve all these necessities when digital LDOs (DLDOs) are suitable solutions. The power-speed trade-off, however, limits the naturally slow transient response of the typical DLDO with synchronous control DLDOs, and fully turned-on power switches may lead to power supply ripples, resulting in poor power supply rejection (PSR). In this paper, a comparative study between ALDOs and DLDOs is presented. We first generally weigh the advantages and disadvantages of ALDOs and DLDOs. The latest DLDO strategies for quick transient response and PSR improvement are briefly discussed next. Finally, we discuss current design trends and potential DLO developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Meinerzhagen, P.A., et al.: An Energy-Efficient Graphics Processor in 14-nm Tri-Gate CMOS Featuring Integrated Voltage Regulators for Fine-Grain DVFS. Retentive Sleep, and VMIN Optimization, in IEEE Journal of Solid-State Circuits 54(1), 144–157 (2019). https://doi.org/10.1109/JSSC.2018.2875097

    Article  Google Scholar 

  2. Nasir, S.B., Gangopadhyay, S., Raychowdhury, A., “5.6 A 0.13μm fully digital low-dropout regulator with adaptive control and reduced dynamic stability for ultrawide dynamic range,”,: IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers. San Francisco, CA, USA 2015, 1–3 (2015). https://doi.org/10.1109/ISSCC.2015.7062944

    Article  Google Scholar 

  3. Chong, Chan, P.K.: A 0.9-/spl mu/A quiescent current output-capacitorless LDO regulator with adaptive power transistors in 65-nm CMOS, In: IEEE Transactions on Circuits and Systems I: regular papers 60(4), pp. 1072–1081 (2013)https://doi.org/10.1109/TCSI.2012.2215392

  4. Lu, Y., Wang, Y., Pan, Q., Ki, W.-H., Yue, C.P.: A Fully Integrated Low-Dropout Regulator with Full-Spectrum Power Supply Rejection. IEEE Trans. Circuits Syst. I Regul. Pap. 62(3), 707–716 (2015). https://doi.org/10.1109/TCSI.2014.2380644

    Article  MathSciNet  MATH  Google Scholar 

  5. Huang, M., Feng, H., Lu, Y.: A Fully Integrated FVF-Based Low-Dropout Regulator with Wide Load Capacitance and Current Ranges. IEEE Trans. Power Electron. 34(12), 11880–11888 (2019). https://doi.org/10.1109/TPEL.2019.2904622

    Article  Google Scholar 

  6. Cai, G., Zhan, C., Lu, Y., Fast-Transient-Response Fully Integrated Digital, A., LDO with Adaptive Current Step Size Control,: IEEE International Symposium on Circuits and Systems (ISCAS). Sapporo, Japan 2019, 1–4 (2019). https://doi.org/10.1109/ISCAS.2019.8702758

    Article  Google Scholar 

  7. Park, C. -J., Onabajo, M., Silva-Martinez, J.: External capacitor-less low Drop-out regulator With 25 DB Superior power supply rejection in the 0.4–4 MHz Range, In: IEEE J. Solid-State Circuits. 49(2), pp. 486–501 (2014) https://doi.org/10.1109/JSSC.2013.2289897

  8. Lu, Y., Martins, R.P., Seng-Pan, U., et al.: A 312 ps response-time LDO with enhanced super source follower in 28 nm CMOS. Electron Lett 52, 1368 (2016)

    Article  Google Scholar 

  9. V. Gupta, G. A. Rincon-Mora and P. Raha, Analysis and design of monolithic, high PSR, linear regulators for SoC applications, IEEE International SOC Conference: Proceedings. Santa Clara, CA, USA 2004, 311–315 (2004)https://doi.org/10.1109/SOCC.2004.1362447

    Article  Google Scholar 

  10. de Groot, A.C., Toonstra, J.: 10. In: Casuïstiek in de dermatologie deel Bohn Stafleu van Loghum, Houten 2, pp. 33–36 (2010)https://doi.org/10.1007/978-90-313-8458-7_10

    Chapter  Google Scholar 

  11. Huang, M., Lu, Y., Sin,S.-W., U, S. -P., Martins, R.P., Ki, W.-H.: Limit Cycle Oscillation Reduction for Digital Low Dropout Regulators, in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 9, pp. 903–907, Sept. 2016, doi: https://doi.org/10.1109/TCSII.2016.2534778

  12. Nasir, S.B., Raychowdhury, A., On limit cycle oscillations in discrete-time digital linear regulators,: IEEE Applied Power Electronics Conference and Exposition (APEC). Charlotte, NC, USA 2015, 371–376 (2015). https://doi.org/10.1109/APEC.2015.7104377

    Article  Google Scholar 

  13. Huang, M., Lu, Y., Sin, S.-W., Seng-Pan, U., Martins, R.P.: A Fully Integrated Digital LDO With Coarse–Fine-Tuning and Burst-Mode Operation. IEEE Trans. Circuits Syst. II Express Briefs 63(7), 683–687 (2016). https://doi.org/10.1109/TCSII.2016.2530094

    Article  Google Scholar 

  14. Salem, L.G., Warchall, J., Mercier, P.P.: A Successive Approximation Recursive Digital Low-Dropout Voltage Regulator with PD Compensation and Sub-LSB Duty Control. IEEE J. Solid-State Circuits 53(1), 35–49 (2018). https://doi.org/10.1109/JSSC.2017.2766215

    Article  Google Scholar 

  15. Huang, M., Lu, Y,, Seng-Pan, U., et al.: An output-capacitor-free ana-log-assisted digital low-dropout regulator with tri-loop control. In: 2017 IEEE International Solid-State Circuits Conference (ISSCC), 342 (2017)

    Google Scholar 

  16. M. Huang, Y. Lu, S. -P. U and R. P. Martins, An Analog-Assisted Tri-Loop Digital Low-Dropout Regulator, in IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 20–34, Jan. 2018, doi: https://doi.org/10.1109/JSSC.2017.2751512

  17. Huang, M., Lu, Y., Lu, X.: Partial analog-assisted digital low dropout regulator with transient body-drive and 2.5 × FOM improvement. Electron Lett. 54, 282 (2018)

    Google Scholar 

  18. Ma, X., Lu, Y., Martins, R.P., Li, Q., A 0.4 V 430nA quiescent current NMOS digital LDO with NAND-based analog-assisted loop in 28 nm CMOS,: IEEE International Solid - State Circuits Conference - (ISSCC). San Francisco, CA, USA 2018, 306–308 (2018). https://doi.org/10.1109/ISSCC.2018.8310306

  19. Akram, M.A., Hong, W., Hwang, I.C.: Fast transient fully standard-cell-based all digital low-dropout regulator with 99.97% current efficiency. IEEE Trans Power Electron. 33, 8011 (2018)

    Google Scholar 

  20. Sun, X., Boora, A., Zhang, W., Pamula, V.R., Sathe, V., 14.5 A 0.6-to-1.1 V Computationally Regulated Digital LDO with 2.79-Cycle Mean Settling Time and Autonomous Runtime Gain Tracking in 65 nm CMOS,: IEEE International Solid- State Circuits Conference - (ISSCC). San Francisco, CA, USA 2019, 230–232 (2019). https://doi.org/10.1109/ISSCC.2019.8662298

  21. Lee, Y.-J., et al.: A 200-mA Digital Low Drop-Out Regulator with Coarse-Fine Dual Loop in Mobile Application Processor. IEEE J. Solid-State Circuits 52(1), 64–76 (2017). https://doi.org/10.1109/JSSC.2016.2614308

    Article  Google Scholar 

  22. Kim, D., Seok, M., 8.2 Fully integrated low-drop-out regulator based on event-driven PI control,: IEEE International Solid-State Circuits Conference (ISSCC). San Francisco, CA, USA 2016, 148–149 (2016). https://doi.org/10.1109/ISSCC.2016.7417950

  23. Gangopadhyay, S., Somasekhar, D., Tschanz, J.W., Raychowdhury, A.: A 32 nm Embedded, Fully Digital, Phase-Locked Low Dropout Regulator for Fine Grained Power Management in Digital Circuits. IEEE J. Solid-State Circuits 49(11), 2684–2693 (2014). https://doi.org/10.1109/JSSC.2014.2353798

    Article  Google Scholar 

  24. Kundu, S., Liu, M., Wen, S.-J., Wong, R., Kim, C.H.: A Fully Integrated Digital LDO With Built-In Adaptive Sampling and Active Voltage Positioning Using a Beat-Frequency Quantizer. IEEE J. Solid-State Circuits 54(1), 109–120 (2019). https://doi.org/10.1109/JSSC.2018.2870558

    Article  Google Scholar 

  25. Lee, Y.-H., et al.: A Low Quiescent Current Asynchronous Digital-LDO With PLL-Modulated Fast-DVS Power Management in 40 nm SoC for MIPS Performance Improvement. IEEE J. Solid-State Circuits 48(4), 1018–1030 (2013). https://doi.org/10.1109/JSSC.2013.2237991

    Article  Google Scholar 

  26. Yang, F., Mok, P.K.T.: A Nanosecond-Transient Fine-Grained Digital LDO With Multi-Step Switching Scheme and Asynchronous Adaptive Pipeline Control. IEEE J. Solid-State Circuits 52(9), 2463–2474 (2017). https://doi.org/10.1109/JSSC.2017.2709311

    Article  Google Scholar 

  27. Lu, Y., Huang, M., Martins, R.P.: PID Control Considerations for Analog-Digital Hybrid Low-Dropout Regulators (Invited Paper), In: 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Xi'an, China, pp. 1–3, (2019)https://doi.org/10.1109/EDSSC.2019.8754302

  28. Kim, S.T., 8.6 Enabling wide autonomous DVFS in a 22 nm graphics execution core using a digitally controlled hybrid LDO, switched-capacitor VR with fast droop mitigation, et al.: IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers. San Francisco, CA, USA 2015, 1–3 (2015). https://doi.org/10.1109/ISSCC.2015.7062972

  29. Zhang, Y., Song, H., Zhou, R., Rhee, W., Shim, I., Wang, Z.: A Capacitor-Less Ripple-Less Hybrid LDO With Exponential Ratio Array and 4000x Load Current Range. IEEE Trans. Circuits Syst. II Express Briefs 66(1), 36–40 (2019). https://doi.org/10.1109/TCSII.2018.2834899

    Article  Google Scholar 

  30. Wang, X., Mercier, P.P.: A Dynamically High-Impedance Charge-Pump-Based LDO With Digital-LDO-Like Properties Achieving a Sub4-fs FoM. IEEE J. Solid-State Circuits 55(3), 719–730 (2020). https://doi.org/10.1109/JSSC.2019.2960004

    Article  Google Scholar 

  31. Nasir, S.B., Sen, S., Raychowdhury, A.: Switched-Mode-Control Based Hybrid LDO for Fine-Grain Power Management of Digital Load Circuits. IEEE J. Solid-State Circuits 53(2), 569–581 (2018). https://doi.org/10.1109/JSSC.2017.2767183

    Article  Google Scholar 

  32. Liu, X., 14.7 A Modular Hybrid LDO with Fast Load-Transient Response and Programmable PSRR in 14 nm CMOS Featuring Dynamic Clamp Tuning and Time-Constant Compensation, et al.: IEEE International Solid- State Circuits Conference - (ISSCC). San Francisco, CA, USA 2019, 234–236 (2019). https://doi.org/10.1109/ISSCC.2019.8662343

  33. Huang, M., Lu, Y., Digital, A.-P.-I.-L., LDO with Fast Response, Improved PSR and Zero Minimum Load Current,: IEEE Custom Integrated Circuits Conference (CICC). Austin, TX, USA 2019, 1–4 (2019). https://doi.org/10.1109/CICC.2019.8780307

    Article  Google Scholar 

  34. Huang, M., Lu, Y., Martins, R.P.: An Analog-Proportional Digital-Integral Multiloop Digital LDO With PSR Improvement and LCO Reduction. IEEE J. Solid-State Circuits 55(6), 1637–1650 (2020). https://doi.org/10.1109/JSSC.2020.2967540

    Article  Google Scholar 

  35. Bang, S., 25.1 A Fully Synthesizable Distributed and Scalable All-Digital LDO in 10 nm CMOS, et al.: IEEE International Solid- State Circuits Conference - (ISSCC). San Francisco, CA, USA 2020, 380–382 (2020). https://doi.org/10.1109/ISSCC19947.2020.9063040

  36. Y. Li, X. Zhang, Z. Zhang and Y. Lian, A 0.45-to-1.2-V Fully Digital Low-Dropout Voltage Regulator with Fast-Transient Controller for Near/Subthreshold Circuits, in IEEE Transactions on Power Electronics, vol. 31, no. 9, pp. 6341–6350, Sept. 2016, doi: https://doi.org/10.1109/TPEL.2015.2506605

  37. Oh, J., Park, J.-E., Hwang, Y.-H., Jeong, D.-K.: 25.2 A 480mA Output-Capacitor-Free Synthesizable Digital LDO Using CMP- Triggered Oscillator and Droop Detector with 99.99% Current Efficiency, 1.3ns Response Time, and 9.8A/mm2 Current Density, 2020 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, pp. 382-384 (2020)https://doi.org/10.1109/ISSCC19947.2020.9063018

  38. Singh, A., et al.: A Digital Low-Dropout Regulator with Autotuned PID Compensator and Dynamic Gain Control for Improved Transient Performance Under Process Variations and Aging. IEEE Trans. Power Electron. 35(3), 3242–3253 (2020). https://doi.org/10.1109/TPEL.2019.2930490

    Article  Google Scholar 

  39. Ahmed, Z.K., Variation-Adaptive Integrated Computational Digital, A., LDO in 22 nm CMOS with Fast Transient Response, et al.: Symposium on VLSI Circuits. Kyoto, Japan 2019, C124–C125 (2019). https://doi.org/10.23919/VLSIC.2019.8778070

  40. Lu, Y., Yang, F., Chen, F., Mok, P.K.T., A 500mA analog-assisted digital-LDO-based on-chip distributed power delivery grid with cooperative regulation and IR-drop reduction in 65 nm CMOS,: IEEE International Solid - State Circuits Conference - (ISSCC). San Francisco, CA, USA 2018, 310–312 (2018). https://doi.org/10.1109/ISSCC.2018.8310308

  41. Hazucha, P., Karnik, T., Bloechel, B.A., Parsons, C., Finan, D., Borkar, S.: Area-efficient linear regulator with ultrafast load regulation. IEEE J. Solid-State Circuits 40(4), 933–940 (2005). https://doi.org/10.1109/JSSC.2004.842831

    Article  Google Scholar 

  42. Duong, Q.-H., et al.: Multiple-Loop Design Technique for High-Performance Low-Dropout Regulator. In: IEEE J. Solid-State Circuits 52(10), 2533–2549 (2017). https://doi.org/10.1109/JSSC.2017.2717922

    Article  Google Scholar 

  43. Khadiri, K.E., Qjidaa, H.: A low noise, high PSR low-dropout regulator for low-cost portable electronics, 2013 ACS International Conference on Computer Systems and Applications (AICCSA), Ifrane, Morocco, pp. 1–5, (2013) https://doi.org/10.1109/AICCSA.2013.6616415

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim El Khadiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El Mouzouade, S., El Khadiri, K., Qjidaa, H., Jamil, M.O., Tahiri, A. (2023). Digital vs Analog Low Dropout Regulators a Comparative Study. In: Motahhir, S., Bossoufi, B. (eds) Digital Technologies and Applications. ICDTA 2023. Lecture Notes in Networks and Systems, vol 669. Springer, Cham. https://doi.org/10.1007/978-3-031-29860-8_77

Download citation

Publish with us

Policies and ethics