Skip to main content

HDL Coder Tool for ECG Signal Denoising

  • Conference paper
  • First Online:
Digital Technologies and Applications (ICDTA 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 668))

Included in the following conference series:

Abstract

Denoising is a primordial stage in ECG signal analysis. The hybrid denoising method based on the DWT and the ADTF methods is one of the efficient algorithms developed for ECG signal denoising. The FPGAs integrated circuits have been successfully used in many applications making them unavoidable. However, FPGAs run with HDLs that describe systems as functional circuits at low-level abstraction. Thus, the integration of the system has become more difficult and time-consuming as the system’s complexity increases. Therefore, numerous High-Level synthesis (HLS) tools have been built to address this problem. These tools allow system description at a higher level of abstraction and generate corresponding synthesizable HDL for FPGAs or ASICs. This work presents an HLS description for the DWT-ADTF filter using the Matlab HDL Coder HLS tool. The algorithm is described inside a Matlab user-defined function and a VHDL architecture is generated. The simulation of the obtained VHDL architecture has been carried out using the Modelsim tool. The ECG signal n°103 from the MIT-BIH Arrhythmia database was used for verification where it was corrupted with an input additive white Gaussian noise (AWGN) of 10 dB. Simulation results show that the signal is well denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Luo, S., Johnston, P.: A review of electrocardiogram filtering. J. Electrocardiol. 43, 486–496 (2010). https://doi.org/10.1016/j.jelectrocard.2010.07.007

    Article  Google Scholar 

  2. Bansal, D.: Design of 50 Hz notch filter circuits for better detection of online ECG. Int. J. Biomed. Eng. Technol. 13, 30–48 (2013)

    Google Scholar 

  3. Bhogeshwar, S.S., Soni, M.K., Bansal, D.: To verify and compare denoising of ECG signal using various denoising algorithms of IIR and FIR filters. Int. J. Biomed. Eng. Technol. 16, 244–267 (2014). https://doi.org/10.1504/IJBET.2014.065806

    Article  Google Scholar 

  4. Cuomo, S., De Pietro, G., Farina, R., Galletti, A., Sannino, G.: A novel O(n) numerical scheme for ECG signal denoising. Procedia Comput. Sci. 51, 775–784 (2015). https://doi.org/10.1016/j.procs.2015.05.198

    Article  Google Scholar 

  5. Castillo, E., Morales, D.P., García, A., Martínez-Martí, F., Parrilla, L., Palma, A.J.: Noise suppression in ECG signals through efficient one-step wavelet processing techniques. J. Appl. Math. 2013, 1–13 (2013). https://doi.org/10.1155/2013/763903

  6. Aqil, M., Jbari, A., Bourouhou, A.: ECG signal denoising by discrete wavelet transform ECG signal denoising by discrete wavelet transform. Int. J. Electron. Commun. Comput. Eng. (2017). https://doi.org/10.3991/ijoe.v13i09.7159

    Article  Google Scholar 

  7. Pal, S., Mitra, M.: Empirical mode decomposition based ECG enhancement and QRS detection. Comput. Biol. Med. 42, 83–92 (2012). https://doi.org/10.1016/j.compbiomed.2011.10.012

    Article  Google Scholar 

  8. Liu, S.H., Hsieh, C.H., Chen, W., Tan, T.H.: ECG noise cancellation based on grey spectral noise estimation. Sensors (Switzerland) 19, 1–16 (2019). https://doi.org/10.3390/s19040798

    Article  Google Scholar 

  9. Xiong, P., Wang, H., Liu, M., Lin, F., Hou, Z., Liu, X.: A stacked contractive denoising auto-encoder for ECG signal denoising. Physiol. Meas. 37, 2214–2230 (2016). https://doi.org/10.1088/0967-3334/37/12/2214

    Article  Google Scholar 

  10. Wang, G., et al.: ECG signal denoising based on deep factor analysis. Biomed. Signal Process. Control 57, 101824 (2020). https://doi.org/10.1016/j.bspc.2019.101824

    Article  Google Scholar 

  11. Jenkal, W., Latif, R., Toumanari, A., Dliou, A., El, O., Maoulainine, F.M.R.: An efficient algorithm of ECG signal denoising using the adaptive dual threshold filter and the discrete wavelet transform. Integr. Med. Res. 36, 499–508 (2016). https://doi.org/10.1016/j.bbe.2016.04.001

    Article  Google Scholar 

  12. Boda, S., Mahadevappa, M., Kumar, P.: Biomedical signal processing and control a hybrid method for removal of power line interference and baseline wander in ECG signals using EMD and EWT. Biomed. Signal Process. Control 67, 102466 (2021). https://doi.org/10.1016/j.bspc.2021.102466

    Article  Google Scholar 

  13. Jenkal, W., Latif, R., Toumanari, A., Elouardi, A., Hatim, A., El’bcharri, O.: Real-time hardware architecture of the adaptive dual threshold filter based ECG signal denoising. J. Theor. Appl. Inf. Technol. 96, 4649–4659 (2018)

    Google Scholar 

  14. Huang, L., Li, D.-L., Wang, K.-P., Gao, T., Tavares, A.: A survey on performance optimization of high-level synthesis tools. J. Comput. Sci. Technol. 35(3), 697–720 (2020). https://doi.org/10.1007/s11390-020-9414-8

    Article  Google Scholar 

  15. Mathworks, C., Drive, A.H.: HDL CoderTM Reference (2020)

    Google Scholar 

  16. Senouci, A., Bouhedjeur, H., Tourche, K., Boukabou, A.: FPGA based hardware and device-independent implementation of chaotic generators. AEU-Int. J. Electron. Commun. 82, 211–220 (2017). https://doi.org/10.1016/j.aeue.2017.08.011

    Article  Google Scholar 

  17. Bonny, T.: Chaotic or hyper-chaotic oscillator? Numerical solution, circuit design, MATLAB HDL-coder implementation, VHDL code, security analysis, and FPGA realization. Circuits Syst. Signal Process. 40(3), 1061–1088 (2020). https://doi.org/10.1007/s00034-020-01521-8

    Article  Google Scholar 

  18. Sikka, P., Asati, A.R., Shekhar, C.: Area, speed and power optimized implementation of a Band-Pass FIR Filter using high-level synthesis. Wireless Pers. Commun. 127, 1869–1878 (2021). https://doi.org/10.1007/s11277-021-08727-2

    Article  Google Scholar 

  19. Sikka, P., Asati, A.R., Shekhar, C.: High-speed and area-efficient Sobel edge detector on field-programmable gate array for artificial intelligence and machine learning applications. Comput. Intell. 37, 1056–1067 (2021). https://doi.org/10.1111/coin.12334

    Article  MathSciNet  Google Scholar 

  20. Corporation, A.: Section I . Cyclone II. History, pp. 1–168 (2008)

    Google Scholar 

  21. Mejhoudi, S., Latif, R., Jenkal, W., Saddik, A., El Ouardi, A.: Hardware architecture for adaptive dual threshold filter and discrete wavelet transform based ECG signal denoising. Int. J. Adv. Comput. Sci. Appl. 12, 45–54 (2021). https://doi.org/10.14569/IJACSA.2021.0121106

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouchra Bendahane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bendahane, B., Jenkal, W., Laaboubi, M., Latif, R. (2023). HDL Coder Tool for ECG Signal Denoising. In: Motahhir, S., Bossoufi, B. (eds) Digital Technologies and Applications. ICDTA 2023. Lecture Notes in Networks and Systems, vol 668. Springer, Cham. https://doi.org/10.1007/978-3-031-29857-8_75

Download citation

Publish with us

Policies and ethics