Skip to main content

Choice of Materials for Triboelectric Nanogenerators

  • Reference work entry
  • First Online:
Handbook of Triboelectric Nanogenerators

Abstract

A triboelectric nanogenerator is a promising technology in effectively converting mechanical energy to electric energy, which is broadly applicable to many areas such as energy harvesting, self-powered sensors, and biomedical applications. This chapter includes the overview of the materials for triboelectric nanogenerator. Various topics from the fundamentals of the contact electrification to the strategies to increase the charge density are covered from materials aspect. Finally, material challenges in triboelectric nanogenerators such as mechanical stability, thermal stability, humidity sensitivity, and big noise are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bai Z, Xu Y, Zhang Z, Zhu J, Gao C, Zhang Y, Jia H, Guo J (2020) Highly flexible, porous electroactive biocomposite as attractive tribopositive material for advancing high-performance triboelectric nanogenerator. Nano Energy 75:104884

    Article  CAS  Google Scholar 

  • Baytekin HT, Patashinski AZ, Branicki M, Baytekin B, Soh S, Grzybowski BA (2011) The mosaic of surface charge in contact electrification. Science 333:308

    Article  CAS  Google Scholar 

  • Burgo TAL, Ducati TRD, Francisco KR, Clinckspoor KJ, Galembeck F, Galembeck SE (2012) Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces. Langmuir 28:7407

    Article  CAS  Google Scholar 

  • Chen L, Shi Q, Sun Y, Nguyen T, Lee C, Soh S (2018a) Controlling surface charge generated by contact electrification: strategies and applications. Adv Mater 30:1802405

    Article  Google Scholar 

  • Chen X, Miao L, Guo H, Chen H, Song Y, Su Z, Zhang H (2018b) Waterproof and stretchable triboelectric nanogenerator for biomechanical energy harvesting and self-powered sensing. Appl Phys Lett 112:203902

    Article  Google Scholar 

  • Chen H, Xu Y, Zhang J, Wu W, Song G (2019a) Enhanced stretchable graphene-based triboelectric nanogenerator via control of surface nanostructure. Nano Energy 58:304–311

    Article  CAS  Google Scholar 

  • Chen S, Jiang J, Xu F, Gong S (2019b) Crepe cellulose paper and nitrocellulose membrane-based triboelectric nanogenerators for energy harvesting and self-powered human-machine interaction. Nano Energy 61:69–77

    Article  CAS  Google Scholar 

  • Chen C, Wen Z, Shi J, Jian X, Li P, Yeow JTW et al (2020) Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication. Nat Commun 11(1):4143

    Article  CAS  Google Scholar 

  • Cheon S, Kang H, Kim H, Son Y, Lee JY, Shin H-J, Kim S-W, Cho JH (2018) High-performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride–silver nanowire composite nanofibers. Adv Funct Mater 28:1703778

    Article  Google Scholar 

  • Choi D, Yoo D, Kim DS (2015) One-step fabrication of transparent and flexible nanotopographical-triboelectric nanogenerators via thermal nanoimprinting of thermoplastic fluoropolymers. Adv Mater 27:7386–7394

    Article  CAS  Google Scholar 

  • Cui N, Gu L, Lei Y, Liu J, Qin Y, Ma X, Hao Y, Wang ZL (2016) Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator. ACS Nano 10:6131–6138

    Article  CAS  Google Scholar 

  • Cui N, Liu J, Lei Y, Gu L, Xu Q, Liu S, Qin Y (2018) High-performance triboelectric nanogenerator with a rationally designed friction layer structure. ACS Appl Energy Mater 1:2891–2897

    Article  CAS  Google Scholar 

  • Diaz AF, Guay J (1993) Contact charging of organic materials: ion vs. electron transfer. IBM J Res Dev 37:249

    Article  CAS  Google Scholar 

  • Diana MG, George KK (2014) Tribocharging and the triboelectric series. In: Encyclopedia of inorganic and bioinorganic chemistry

    Google Scholar 

  • Du H, Lin X, Xu Z, Chu D (2015) Electric double-layer transistors: a review of recent progress. J Mater Sci 50:5641–5673

    Article  CAS  Google Scholar 

  • Du X, Liu Y, Wang J, Niu H, Yuan Z, Zhao S, Zhang X, Cao R, Yin Y, Li N, Zhang C, Xing Y, Weihua X, Li C (2018) Improved triboelectric nanogenerator output performance through polymer nanocomposites filled with core−shell-structured particles. ACS Appl Mater Interfaces 10:25683–25688

    Article  CAS  Google Scholar 

  • Dudem B, Kim DH, Mule AR, Yu JS (2018) Enhanced performance of microarchitectured PTFE-based triboelectric nanogenerator via simple thermal imprinting lithography for self-powered electronics. ACS Appl Mater Interfaces 10:24181–24192

    Article  CAS  Google Scholar 

  • Fedorov MV, Kornyshev A (2014) A. Ionic liquids at electrified interfaces. Chem Rev 114:2978–3036

    Article  CAS  Google Scholar 

  • Graham S, Dudem B, Patman H, Mule A, Yu J (2020) Integrated design of highly porous cellulose-loaded polymer-based triboelectric films toward flexible, humidity-resistant, and sustainable mechanical energy harvesters. ACS Energy Lett 5:2140–2148

    Article  Google Scholar 

  • Huang S, Shi L, Zou T, Kuang H, Rajagopalan P, Xu H, Zhan S, Chen J, Xuan W, Jin H, Dong S, Zhou H, Wang X, Yin W, Kim JM, Luo J (2020) Controlling performance of organic–inorganic hybrid perovskite triboelectric nanogenerators via chemical composition modulation and electric field-induced ion migration. Adv Energy Mater 10:2002470

    Article  CAS  Google Scholar 

  • Jeong CK, Baek KM, Niu S, Nam TW, Hur YH, Park DY, Hwang G-T, Byun M, Wang ZL, Jung YS, Lee KJ (2014) Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett 14:7031–7038

    Article  CAS  Google Scholar 

  • Jiang W, Li H, Liu Z, Li Z, Tian J, Shi B, Zou Y, Ouyang H, Zhao C, Zhao L, Sun R, Zheng H, Fan Y, Wang ZL, Li Z (2018) Fully bioabsorbable natural-materials-based triboelectric nanogenerators. Adv Mater 30:1801895

    Article  Google Scholar 

  • Jun W, Liang W, Song WZ, Zhou L, Wang X, Ramakrishna S, Long Y (2020) An acid and alkali-resistant triboelectric nanogenerator. Nanoscale 12:23225

    Article  Google Scholar 

  • Kim S, Gupta MK, Lee KY, Sohn A, Kim TY, Shin KS, Kim D, Kim SK, Lee KH, Shin HJ, Kim DW, Kim SW (2014) Transparent flexible graphene triboelectric nanogenerators. Adv Mater 26:3918–3925

    Article  CAS  Google Scholar 

  • Kim KN, Jung YK, Chun J, Ye BU, Gu M, Seo E, Kim S, Kim SW, Kim BS, Baik JM (2016) Surface dipole enhanced instantaneous charge pair generation in triboelectric nanogenerator. Nano Energy 26:360–370

    Article  CAS  Google Scholar 

  • Kim H-J, Yim E-C, Kim J-H, Kim S-J, Park J-Y, Oh I-K (2017) Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy 33:130–137

    Article  CAS  Google Scholar 

  • Kim D, Lee S, Ko Y, Kwon C, Cho J (2018) Layer-by-layer assembly-induced triboelectric nanogenerators with high and stable electric outputs in humid environments. Nano Energy 44:228–239

    Article  CAS  Google Scholar 

  • Kim W, Kim D, Tcho I, Kim J, Kim M, Choi Y (2021) Triboelectric nanogenerator: structure, mechanism, and applications. ACS Nano 15:258–287

    Article  CAS  Google Scholar 

  • Lacks DJ, Mohan Sankaran R (2011) Contact electrification of insulating materials. J Phys D Appl Phys 44:453001

    Article  Google Scholar 

  • Lai M, Du B, Guo H, Xi Y, Yang H, Hu C, Wang J, Wang ZL (2018) Enhancing the output charge density of TENG via building longitudinal paths of electrostatic charges in the contacting layers. ACS Appl Mater Interfaces 10:2158–2165

    Article  CAS  Google Scholar 

  • Lee JP, Ye BU, Kim KN, Lee JW, Choi WJ, Baik JM (2017) 3D printed noise-cancelling triboelectric nanogenerator. Nano Energy 38:377–384

    Article  CAS  Google Scholar 

  • Lee JW, Jung S, Lee TW, Jo J, Chae HY, Choi K, Kim JJ, Lee JH, Yang C, Baik JM (2019a) High-output triboelectric nanogenerator based on dual inductive and resonance effects-controlled highly transparent polyimide for self-powered sensor network systems. Adv Energy Mater 9:1901987

    Article  Google Scholar 

  • Lee JP, Lee JW, Yoon BK, Hwang HJ, Jung S, Kim KA, Choi D, Yang C, Baik JM (2019b) Boosting the energy conversion efficiency of a combined triboelectric nanogenerator-capacitor. Nano Energy 56:571–580

    Article  CAS  Google Scholar 

  • Lee JW, Jung S, Jo J, Han GH, Lee D-M, Oh J, Hwang HJ, Choi D, Kim S-W, Lee JH, Yang C, Baik JM (2021) Sustainable highly charged C60-functionalized polyimide in a non-contact mode triboelectric nanogenerator. Energy Environ Sci 14:1004–1015

    Article  CAS  Google Scholar 

  • Li S, Fan Y, Chen H, Nie J, Liang Y, Tao X, Zhang J, Chen X, Fu E, Wang ZL (2020) Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation. Energy Environ Sci 13:896–907

    Article  CAS  Google Scholar 

  • Li D, Xu C, Liao Y, Cai W, Zhu Y, Wang ZL (2021a) Interface inter-atomic electron-transition induced photon emission in contact-electrification. Sci Adv 7(39):eabj0349

    Article  CAS  Google Scholar 

  • Li Z, Xu B, Han J, Huang J, Chung KY (2021b) Interfacial polarization and dual charge transfer induced high permittivity of carbon dots-based composite as humidity-resistant tribomaterial for efficient biomechanical energy harvesting. Adv Energy Mater 11:2101294

    Article  CAS  Google Scholar 

  • Li Q, Liu W, Yang H, He W, Long L, Wu M, Zhang X, Xi Y, Hu C, Wang ZL (2021c) Ultra-stability high-voltage triboelectric nanogenerator designed by ternary dielectric triboelectrification with partial soft-contact and non-contact mode. Nano Energy 90:106585

    Article  CAS  Google Scholar 

  • Lin Z, Yang J, Li X, Yufen W, Wei W, Liu J, Chen J, Yang J (2018) Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv Funct Mater 28:1704112

    Article  Google Scholar 

  • Liu C, Bard AJ (2008) Electrostatic electrochemistry at insulators. Nat Mater 7:505

    Article  CAS  Google Scholar 

  • Liu C, Bard AJ (2009) Chemical redox reactions induced by cryptoelectrons on a PMMA surface. J Am Chem Soc 131:6397

    Article  CAS  Google Scholar 

  • Lv P, Shi L, Fan C, Gao Y, Yang A, Wang X, Ding S, Rong M (2020) Hydrophobic ionic liquid gel-based triboelectric nanogenerator: next generation of ultrastable, flexible, and transparent power sources for sustainable electronics. ACS Appl Mater Interfaces 12:15012–15022

    Article  CAS  Google Scholar 

  • Ma L, Wu R, Liu S, Patil A, Gong H, Yi J, Sheng F, Zhang Y, Wang J, Wang J, Guo W, Wang ZL (2020) A machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue. Adv Mater 32:2003897

    Article  CAS  Google Scholar 

  • Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182

    Article  CAS  Google Scholar 

  • McCarty LS, Whitesides GM (2008) Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew Chem Int Ed 27(12):2188–2207

    Article  Google Scholar 

  • McCarty LS, Winkleman A, Whitesides GM (2007) Ionic electrets: electrostatic charging of surfaces by transferring mobile ions upon contact. J Am Chem Soc 129:4075

    Article  CAS  Google Scholar 

  • Mule A, Dedem B, Graham S, Yu J (2019) Humidity sustained wearable pouch-type triboelectric nanogenerator for harvesting mechanical energy from human activities. Adv Funct Mater 29:1807779

    Article  Google Scholar 

  • Pan S, Zhang Z (2019) Fundamental theories and basic principles of triboelectric effect: a review. Friction 7:2–17

    Article  Google Scholar 

  • Park SJ, Seol ML, Kim D, Jeon SB, Choi YK (2016) Triboelectric nanogenerator with nanostructured metal surface using water-assisted oxidation. Nano Energy 21:258–264

    Article  CAS  Google Scholar 

  • Park C, Song G, Cho SM, Chung J, Lee Y, Kim EH, Kim M, Lee S, Huh J, Park C (2017) Supramolecular-assembled nanoporous film with switchable metal salts for a triboelectric nanogenerator. Adv Funct Mater 27:1701367

    Article  Google Scholar 

  • Pence S, Novotny VJ, Diaz AF (1994) Effect of surface moisture on contact charge of polymers containing ions. Langmuir 10(2):592–596

    Article  CAS  Google Scholar 

  • Peng Z, Song J, Gao Y, Liu J, Lee C, Chen G, Wang Z, Chen J, Leung MKH (2021) A fluorinated polymer sponge with superhydrophobicity for high-performance biomechanical energy harvesting. Nano Energy 85:106021

    Article  CAS  Google Scholar 

  • Ryu H, Park H-m, Kim M-K, Kim B, Myoung HS, Kim TY, Yoon H-J, Kwak SS, Kim J, Hwang TH, Choi E-K, Kim S-W (2021) Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. Nat Commun 12:4374

    Article  CAS  Google Scholar 

  • Seung W, Yoon H-J, Kim TY, Ryu H, Kim J, Lee J-H, Lee JH, Kim S, Park YK, Park YJ, Kim S-W (2017) Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties. Adv Energy Mater 7:1600988

    Article  Google Scholar 

  • Shi L, Jin H, Dong S, Huang S, Kuang H, Xu H, Chen J, Xuan W, Zhang S, Li S, Wang X, Luo J (2021) High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting. Nano Energy 80:105599

    Article  CAS  Google Scholar 

  • Song G, Kim Y, Yu S, Kim M-O, Park S-H, Cho SM, Velusamy DB, Cho SH, Kim KL, Kim J, Kim E, Park C (2015) Molecularly engineered surface triboelectric nanogenerator by self-assembled monolayers (METS). Chem Mater 27:4749–4755

    Article  CAS  Google Scholar 

  • Srimuk P, Su X, Yoon J, Aurbach D, Presser V (2020) Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nat Rev Mater 5:517–538

    Article  CAS  Google Scholar 

  • Tantraviwat D, Ngamyingyoud M, Sripumkhai W, Pattamang P, Rujijanagul G, Inceesungvorn B (2021) Tuning the dielectric constant and surface engineering of a BaTiO3/porous PDMS composite film for enhanced triboelectric nanogenerator output performance. ACS Omega 6:29765–29773

    Article  CAS  Google Scholar 

  • Tao X, Li S, Shi Y, Wang X, Tian J, Liu Z, Yang P, Chen X, Wang ZL (2021) Triboelectric polymer with high thermal charge stability for harvesting energy from 200 °C flowing air. Adv Funct Mater 31:2106082

    Article  CAS  Google Scholar 

  • Thomas SW III, Vella SJ, Kaufman GK, Whitesides GM (2008) Patterns of electrostatic charge and discharge in contact electrification. Angew Chem Int Ed 47:6654

    Article  CAS  Google Scholar 

  • Wang ZL (2013) Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7:9533–9557

    Article  CAS  Google Scholar 

  • Wang S, Lin L, Wang ZL (2012) Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett 12:6339–6346

    Article  CAS  Google Scholar 

  • Wang S, Xie Y, Niu S, Lin L, Liu C, Zhou YS, Wang ZL (2014) Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding. Adv Mater 26:6720–6728

    Article  CAS  Google Scholar 

  • Wang S, Zi Y, Zhou YS, Li S, Fan F, Lin L, Wang ZL (2016) Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. J Mater Chem A 4:3728–3734

    Article  CAS  Google Scholar 

  • Wanga HS, Jeong CK, Seo M-H, Joe DJ, Han JH, Yoon J-B, Lee KJ (2017) Performance-enhanced triboelectric nanogenerator enabled by wafer-scale nanogrates of multistep pattern downscaling. Nano Energy 35:415–423

    Article  Google Scholar 

  • Wu C, Wang X, Lin L, Guo H, Wang ZL (2016) Paper-based triboelectric nanogenerators made of stretchable interlocking Kirigami patterns. ACS Nano 10:4652–4659

    Article  CAS  Google Scholar 

  • Wu C, Kim TW, Park JH, An H, Shao J, Chen X, Wang ZL (2017) Enhanced triboelectric nanogenerators based on MoS2 monolayer nanocomposites acting as electron-acceptor layers. ACS Nano 11:8356–8363

    Article  CAS  Google Scholar 

  • Xia J, Zheng Z, Guo Y (2022) Mechanically and electrically robust, electro-spun PVDF/PMMA blend films for durable triboelectric nanogenerators. Composites Part A 157:106914

    Article  CAS  Google Scholar 

  • Xu C, Zi Y, Wang AC, Zou H, Dai Y, He X et al (2018) On the electron-transfer mechanism in the contact-electrification effect. Adv Mat 30(15):1706790

    Article  Google Scholar 

  • Xu C, Zhang B, Wang AC, Zou H, Liu G, Ding W, Wu C, Ma M, Feng P, Lin Z, Wang ZL (2019) Contact-electrification between two identical materials: curvature effect. ACS Nano 13:2034–2041

    CAS  Google Scholar 

  • Yang C, Suo Z (2018) Hydrogel ionotronics. Nat Rev Mater 3:125–142

    Article  CAS  Google Scholar 

  • Yang Y, Zhang H, Zhong X, Yi F, Yu R, Zhang Y, Wang ZL (2014) Electret film-enhanced triboelectric nanogenerator matrix for self-powered instantaneous tactile imaging. ACS Appl Mater Interfaces 6:3680–3688

    Article  CAS  Google Scholar 

  • Yang W, Wang X, Li H, Wu J, Hu Y, Li Z, Liu H (2019) Fundamental research on the effective contact area of micro-/nano-textured surface in triboelectric nanogenerator. Nano Energy 57:41–47

    Article  CAS  Google Scholar 

  • Zhan F, Wang G, Wu TT, Dong Q, Meng YL, Wang JR, Yang J, Li SF, Qiu JS (2017) High performance asymmetric capacitive mixing with oppositely charged carbon electrodes for energy production from salinity differences. J Mater Chem A 5:20374–20380

    Article  CAS  Google Scholar 

  • Zhan F, Wang A, Xu L, Lin S, Shao J, Chen X, Wang ZL (2020) Electron transfer as a liquid droplet contacting a polymer surface. ACS Nano 14:17565–17573

    Article  CAS  Google Scholar 

  • Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  • Zhang X-S, Han M-D, Wang R-X, Meng B, Zhu F-Y, Sun X-M, Hu W, Wang W, Li Z-H, Zhang H-X (2014) High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy 4:123–131

    Article  CAS  Google Scholar 

  • Zhang L, Zhang B, Chen J, Jin L, Deng W, Tang J, Zhang H, Pan H, Zhu M, Yang W, Wang ZL (2016) Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv Mater 28:1650–1656

    Article  CAS  Google Scholar 

  • Zhang J, Zheng Y, Xu L, Wang D (2020) Oleic-acid enhanced triboelectric nanogenerator with high output performance and wear resistance. Nanoe Energy 69:104435

    Article  CAS  Google Scholar 

  • Zimmermann R, Dukhin S, Werner C (2001) Electrokinetic measurements reveal interfacial charge at polymer films caused by simple electrolyte ions. J Phys Chem B 105:8544–8549

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Min Baik .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kim, SW., Kim, JK., Jung, S., Lee, J.W., Yang, C., Baik, J.M. (2023). Choice of Materials for Triboelectric Nanogenerators. In: Wang, Z.L., Yang, Y., Zhai, J., Wang, J. (eds) Handbook of Triboelectric Nanogenerators. Springer, Cham. https://doi.org/10.1007/978-3-031-28111-2_13

Download citation

Publish with us

Policies and ethics