Skip to main content

New Data on the Phylogenetic Diversity of Bacteria and Archaea in Marls of the Verkhnekamsk Salt Deposit (Russia)

  • Conference paper
  • First Online:
Science and Global Challenges of the 21st Century – Innovations and Technologies in Interdisciplinary Applications (Perm Forum 2022)

Abstract

The phylogenetic diversity of archaea and bacteria was investigated for the first time in marl samples of the Verkhnekamsk salt deposit of Perm Krai (Russia). Two libraries of 16S rRNA genes from the marl sample (depth of 70.5 m) obtained by molecular genetic methods (cloning of 16S rRNA genes, RFLP analysis and sequencing) were distributed in 3 archaeal OTUs (80 clones) and 11 bacterial OTUs (86 clones). Phylogenetic analysis showed a low diversity of Archaea, closely related to the Thaumarchaeota phylum (phylogenetic cluster Marine Group I). Thereto, all archaeal OTUs were similar in the 16S rRNA gene with an uncultured archaeal clone isolated from groundwater of the Permian period. Molecular phylogeny revealed that bacterial diversity was presented by the phyla Proteobacteria, Actinobacteria and Acidobacteria. The dominant phylum Proteobacteria (75.54% of total bacterial clones) included 7 OTU, belonging to the classes Alpha-, Beta- and Gammaproteobacteria, most of which (44.19%) refer to the representatives of the genus Pseudomonas (class Gammaproteobacteria). Up to 12% of total bacterial clones may represent novel taxonomic units. This study indicated the occurrence and diversity of endolithic bacteria and archaea in the marls of the salt deposit, the presence of some of them was recorded for the first time in the saline endolithic microbial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Margesin, R., Schinner, F.: Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5, 73–83 (2001)

    Article  Google Scholar 

  2. Morozkina, E.V., Slutskaya, E.S., Fedorova, T.V.: Extremophilic microorganisms: biochemical adaptation and biotechnological application (review). Appl. Biochem. Microbiol. 46(1), 1–14 (2010)

    Article  Google Scholar 

  3. Pallen, M., Telatin, A., Oren, A.: The next million names for archaea and bacteria. Trends Microbiol. 29(4), 289–298 (2021)

    Article  Google Scholar 

  4. Edbeib, M.F., Wahab, R.A., Huyop, F.: Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments. World J. Microbiol. Biotechnol. 32(8), 1–23 (2016). https://doi.org/10.1007/s11274-016-2081-9

    Article  Google Scholar 

  5. Oren, A.: Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst. 4(2), 1–13 (2008)

    Google Scholar 

  6. Stan-Lotter, H., Gruber, C., Radax, Ch.: Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. Int. J. Syst. Evol. Microbiol. 52, 1807–1814 (2002)

    Google Scholar 

  7. Satterfield, C.L., Lowenstein, T.K., Vreeland, R.H.: New evidence for 250 Ma age of halotolerant bacterium from a Permian salt crystal. Geology 33(4), 265–268 (2005)

    Article  Google Scholar 

  8. Korsakova, E.S., Anan’ina, L.N., Nazarov, A.V., et al.: Diversity of bacteria of the family Halomonadaceae at the mining area of the Verkhnekamsk salt deposit. Microbiology 82, 249–252 (2013)

    Article  Google Scholar 

  9. Perri, E., Gindre-Chanu, L., Caruso, A., et al.: Microbial-mediated pre-salt carbonate deposition during the Messinian salinity crisis (Calcare di Base fm., Southern Italy). Mar. Pet. Geol. 88, 235–250 (2017)

    Google Scholar 

  10. Vreeland, R.H., Rosenzweig, W.D., Powers, D.W.: Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407, 897–900 (2000)

    Article  Google Scholar 

  11. Schubert, B.A., Lowenstein, T.K., Timofeeff, M.N., Parker, M.A.: How do prokaryotes survive in fluid inclusions in halite for 30 k.y.? Geology 37(12), 1059–1062 (2009)

    Google Scholar 

  12. Park, J.S., Vreeland, R.H., Cho, B.C., et al.: Haloarchaeal diversity in 23, 121 and 419 MYA salts. Geobiology 7, 515–523 (2009)

    Article  Google Scholar 

  13. Gramain, A., Díaz, G.C., Demergasso, C., et al.: Archaeal diversity along a subterranean salt core from the Salar Grande (Chile). Environ. Microbiol. 13(8), 2105–2121 (2011)

    Article  Google Scholar 

  14. Stan-Lotter, H., Fendrihan, S.: Halophilic archaea: life with desiccation, radiation and oligotrophy over geological times. Life 5, 1487–1496 (2015)

    Article  Google Scholar 

  15. Jaakkola, S.T., Ravantti, J.J., Oksanen, H.M., Bamford, D.H.: Buried alive: microbes from ancient halite. Trends Microbiol. 24(2), 148–160 (2016)

    Article  Google Scholar 

  16. Kashnikov, Y., Ermashov, A., Efimov, A.: Geological and geomechanical model of the Verkhnekamsk potash deposit site. J. Min. Inst. 237, 259–267 (2019)

    Article  Google Scholar 

  17. Gubanova, E.A.: The influence of the deformation history on the location of rock destruction. Procedia Struct. Integr. 32, 42–48 (2021)

    Article  Google Scholar 

  18. Hugenholtz, P., Goebel, B.M., Pace, N.R.: Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180(18), 4765–4774 (1998)

    Article  Google Scholar 

  19. Mineev, V.G.: Practicum on Agricultural Chemistry, 2nd edn. Moscow University Press, Moscow (2001)

    Google Scholar 

  20. Bachurin, B.A., Odintsova, T.A., Khokhryakova, E.S.: Hydrocarbon markers of the organic matter of salts of the Verkhnekamsk deposit. Probl. Mineral. Petrography Metallogeny 19, 315–323 (2016)

    Google Scholar 

  21. ATCC Medium 2399: https://www.atcc.org/~/media/822926D3A28C441A92D1ACA8FE-9830CF.ashx. Accessed 29 Apr 2022

  22. Medium data. https://www.jcm.riken.go.jp/cgi-bin/jcm/jcm_grmd?GRMD=168. Accessed 29 Apr 2022

  23. Lane, D.J.: 16S/23S rRNA sequencing. In: Stackebrandt, E., Goodfellow, M. (eds.) Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Wiley, New York (1991)

    Google Scholar 

  24. Grosskopf, R., Janssen, P.H., Liesack, W.: Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl. Environ. Microbiol. 64(3), 960–969 (1998)

    Article  Google Scholar 

  25. Delong, E.F.: Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89, 5685–5689 (1992)

    Article  Google Scholar 

  26. Tamura, K., Stecher, G., Kumar, S.: MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38(7), 3022–3027 (2021)

    Article  Google Scholar 

  27. GenBank: https://www.ncbi.nlm.nih.gov/genbank. Accessed 29 Apr 2022

  28. EzBioCloud: https://www.ezbiocloud.net/identify. Accessed 29 Apr 2022

  29. Huber, T., Faulkner, G., Hugenholtz, P.: Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20(14), 2317–231910 (2004)

    Article  Google Scholar 

  30. Raymond, R.L.: Microbial oxidation of n-paraffinic hydrocarbons. Dev. Ind. Microbiol. 2, 23–32 (1961)

    Google Scholar 

  31. Hong, Y., Youshao, W., Chen, F.: Archaea dominate ammonia oxidizers in the Permian water ecosystem of Midland Basin. Microbes Environ. 28(3), 396–399 (2013)

    Article  Google Scholar 

  32. Hu, A., Jiao, N., Zhang, R., Yang, Z.: Niche partitioning of Marine Group I Crenarchaeota in the euphotic and upper mesopelagic zones of the East China Sea. Appl. Environ. Microbiol. 77, 7469–7478 (2011)

    Article  Google Scholar 

  33. Pester, M., Schleper, C., Wagner, M.: The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr. Opin. Microbiol. 14, 300–306 (2011)

    Article  Google Scholar 

  34. Brochier-Armanet, C., Boussau, B., Gribaldo, S., Forterre, P.: Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6(3), 245–252 (2008)

    Article  Google Scholar 

  35. Merkel, A.Y., et al.: Structure of the archaeal community in the Black Sea photic zone. Microbiology 84(4), 570–576 (2015). https://doi.org/10.1134/S0026261715040128

    Article  Google Scholar 

  36. Lin, X., Kennedy, D., Fredrickson, J., et al.: Vertical stratification of subsurface microbial community composition across geological formations at the Hanford site. Environ. Microbiol. 14(2), 414–425 (2012)

    Article  Google Scholar 

  37. Qin, W., Heal, K.R., Ramdasi, R., et al.: Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota. Int. J. Syst. Evol. Microbiol. 67, 5067–5079 (2017)

    Google Scholar 

  38. Dong, K., Kim, W.-S., Tripathi, B., Adams, J.: Generalized soil Thaumarchaeota community in weathering rock and saprolite. Microb. Ecol. 69, 356–360 (2015)

    Article  Google Scholar 

  39. DiRuggiero, J., Wierzchos, J., Robinson, C.K., et al.: Microbial colonisation of chasmoendolithic habitats in the hyper-arid zone of the Atacama desert. Biogeosciences 10(4), 2439–2450 (2013)

    Article  Google Scholar 

  40. de los Ríos, A., Valea, S., Ascaso, C., et al.: Comparative analysis of the microbial communities inhabiting halite evaporates of the Atacama desert. Int. Microbiol. 13(2), 79–89 (2010)

    Google Scholar 

  41. Horath, T., Bachofen, R.: Molecular characterization of an endolithic microbial community in dolomite rock in the central Alps (Switzerland). Microb. Ecol. 58(2), 290–306 (2009)

    Article  Google Scholar 

  42. Wierzchos, J., Casero, M.C., Artieda, O., Ascaso, C.: Endolithic microbial habitats as refuges for life in polyextreme environment of the Atacama desert. Curr. Opin. Microbiol. 43, 124–131 (2018)

    Article  Google Scholar 

  43. Stivaletta, N., Barbieri, R., Billi, D.: Microbial colonization of the salt deposits in the driest place of the Atacama desert (Chile). Orig. Life Evol. Biosph. 42, 187–200 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The work was carried out within the state task (#AAAA-A19-119112290008-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina S. Korsakova .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Korsakova, E.S., Pyankova, A.A., Bachurin, B.A., Plotnikova, E.G. (2023). New Data on the Phylogenetic Diversity of Bacteria and Archaea in Marls of the Verkhnekamsk Salt Deposit (Russia). In: Isaeva, E., Rocha, Á. (eds) Science and Global Challenges of the 21st Century – Innovations and Technologies in Interdisciplinary Applications. Perm Forum 2022. Lecture Notes in Networks and Systems, vol 622. Springer, Cham. https://doi.org/10.1007/978-3-031-28086-3_46

Download citation

Publish with us

Policies and ethics