Skip to main content

Abstract

Ensemble approach for multi-label classification has received great attention from the Machine Learning community over the last decade. It has been developed on top of the problem transformation or algorithm adaptation methods to overcome some scientific challenges introduced by multi-label learning. The success of ensemble models in this classification paradigm arises by offering an appealing solution to different problems, such as label dependencies, class imbalance, and high dimensionality. In this study, we present a structured synthesis of different ensemble multi-label classifiers including their different taxonomies cited in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schapire, R.E., Singer, Y.: BoosTexter: a boosting-based system for text categorization. Mach. Learn. 39(2/3), 135–168 (2000)

    Google Scholar 

  2. Lo, H.-Y., Wang, J.-C., Wang, H.-M., Lin, S.-D.: Cost-sensitive multi-label learning for audio tag annotation and retrieval. IEEE Trans. Multimed. 13(3), 518–529 (2011)

    Article  Google Scholar 

  3. Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In: De Raedt, L., Siebes, A. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 42–53. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44794-6_4

    Chapter  MATH  Google Scholar 

  4. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehouse. Min. 3(3), 1–13 (2009)

    Google Scholar 

  5. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 254–269. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04174-7_17

    Chapter  Google Scholar 

  6. Tsoumakas, G., Vlahavas, I.: Random k-labelsets: an ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., de Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5_38

    Chapter  Google Scholar 

  7. Read, J., Pfahringer, B., Holmes, G.: Multi-label classification using ensembles of pruned sets. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 995–1000, December 2008

    Google Scholar 

  8. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. arXiv, 21 November 2000. Accessed 12 Nov 2022

    Google Scholar 

  9. Zhang, M.-L., Zhou, Z.-H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Article  MATH  Google Scholar 

  10. Spyromitros, E., Tsoumakas, G., Vlahavas, I.: An empirical study of lazy multilabel classification algorithms. In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnellos, A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 401–406. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87881-0_40

    Chapter  Google Scholar 

  11. Tidake, V.S., Sane, S.S.: Multi-label classification: a survey. Int. J. Eng. Technol. 7(4.19), 1045 (2018)

    Article  Google Scholar 

  12. Zhang, M.-L., Zhou, Z.-H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)

    Article  Google Scholar 

  13. Sharma, S., Mehrotra, D.: Comparative analysis of multi-label classification algorithms. In: 2018 First ICSCCC, Jalandhar, India, pp. 35–38, December 2018

    Google Scholar 

  14. Chevalier, M., Thierno, I.D., Imen, M.-B., Nathalie, S., Olivier, T.: Classification multi-labels de données de santé médico-économiques. 5e Seminaire Veille Strategique Scientifique et Technologique (2018)

    Google Scholar 

  15. Aljedani, N., Alotaibi, R., Taileb, M.: Multi-label Arabic text classification: an overview. Int. J. Adv. Comput. Sci. Appl. 11(10), 694–706 (2020)

    Google Scholar 

  16. Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104 (2012)

    Article  Google Scholar 

  17. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333–359 (2011)

    Article  MathSciNet  Google Scholar 

  18. Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and efficient multilabel classification in domains with large number of labels. In: ECML/PKDD 2008 Workshop on Mining Multidimensional Data (MMD’08), Vol. 21, pp. 53–59 (2008)

    Google Scholar 

  19. Tsoumakas, G.¸ Dimou, A., Spyromitros, E., Kompatsiaris, I., Vlahavas, I.: Correlation-based pruning of stacked binary relevance models for multi-label learning. In: Proceedings of the 1st International Workshop on Learning From Multi-Label (2009)

    Google Scholar 

  20. Mahdavi-Shahri, A., Houshmand, M., Yaghoobi, M., Jalali, M.: Applying an ensemble learning method for improving multi-label classification performance. In: 2016 2nd International Conference of Signal Processing and Intelligent Systems (ICSPIS), pp. 1–6 (2016)

    Google Scholar 

  21. Nasierding, G., Kouzani, A.Z., Tsoumakas, G.: A triple-random ensemble classification method for mining multi-label data. In: 2010 IEEE International Conference on Data Mining Workshops, Sydney, TBD, Australia, pp. 49–56, December 2010

    Google Scholar 

  22. Moyano, J.M., Gibaja, E.L., Cios, K.J., Ventura, S.: An evolutionary approach to build ensembles of multi-label classifiers. Inf. Fusion 50, 168–180 (2019)

    Article  Google Scholar 

  23. Herrera, F., Charte, F., Rivera, A.J., del Jesus, M.J.: Ensemble-based classifiers. In: Herrera, F., Charte, F., Rivera, A.J., del Jesus, M.J. (eds.) Multilabel Classification, pp. 101–113. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41111-8_6

  24. Büyükçakir, A., Bonab, H., Can, F.: A novel online stacked ensemble for multi-label stream classification. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 1063–1072 (2018)

    Google Scholar 

  25. Yapp, E.K.Y., Li, X., Lu, W.F., Tan, P.S.: Comparison of base classifiers for multi-label learning. Neurocomputing 394, 51–60 (2020)

    Article  Google Scholar 

  26. Xia, Y., Chen, K., Yang, Y.: Multi-label classification with weighted classifier selection and stacked ensemble. Inf. Sci. 557, 421–442 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nascimento, D.S.C., Bandeira, D.R.C., Canuto, A.M.P., Araujo, D.: Investigating the impact of diversity in ensembles of multi-label classifiers. In: 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, pp. 1–8, July 2018

    Google Scholar 

  28. Tahir, M.A., Kittler, J., Mikolajczyk, K., Yan, F.: Improving multilabel classification performance by using ensemble of multi-label classifiers. In: El Gayar, N., Kittler, J., Roli, F. (eds.) MCS 2010. LNCS, vol. 5997, pp. 11–21. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12127-2_2

    Chapter  Google Scholar 

  29. Cheng, W., Hüllermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Mach. Learn. 76(2–3), 211–225 (2009)

    Article  MATH  Google Scholar 

  30. Rokach, L., Schclar, A., Itach, E.: Ensemble methods for multi-label classification. Expert Syst. Appl. 41(16), 7507–7523 (2014)

    Article  Google Scholar 

  31. Mahdavi-Shahri, A., Houshmand, M., Yaghoobi, M., Jalali, M.: Applying an ensemble learning method for improving multi-label classification performance. In: 2nd International Conference of Signal Processing and Intelligent Systems (ICSPIS) (2016)

    Google Scholar 

  32. Gibaja, E., Ventura, S.: Multi-label learning: a review of the state of the art and ongoing research: a review on multi-label learning. Interdiscip. Rev. Data Min. Knowl. Discov. 4(6), 411–444 (2014)

    Article  Google Scholar 

  33. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Ensembles of multi-objective decision trees. In: Kok, J.N., Koronacki, J., de Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 624–631. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5_61

    Chapter  Google Scholar 

  34. Moyano, J.M., Gibaja, E.L., Cios, K.J., Ventura, S.: Review of ensembles of multi-label classifiers: models, experimental study and prospects. Inf. Fusion 44, 33–45 (2018)

    Article  Google Scholar 

  35. Alazaidah, R., Kabir, F.: Trending challenges in multi label classification. Int. J. Adv. Comput. Sci. Appl. 7(10), 127–131 (2016)

    Google Scholar 

  36. Kimura, K., Kudo, M., Sun, L., Koujaku, S.: Fast random k-labELsets for large-scale multi-label classification. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 438–443, December 2016

    Google Scholar 

  37. Jethanandani, M., Sharma, A., Perumal, T., Chang, J.-R.: Multi-label classification based ensemble learning for human activity recognition in smart home. Internet Things 12, 100324 (2020)

    Article  Google Scholar 

  38. Moyano, J.M., Gibaja, E.L., Cios, K.J., Ventura, S.: Combining multi-label classifiers based on projections of the output space using Evolutionary algorithms. Knowl. Based Syst. 196, 105770 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Guehria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guehria, S., Belleili, H., Azizi, N. (2023). A Survey on Ensemble Multi-label Classifiers. In: Abraham, A., Hanne, T., Gandhi, N., Manghirmalani Mishra, P., Bajaj, A., Siarry, P. (eds) Proceedings of the 14th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2022). SoCPaR 2022. Lecture Notes in Networks and Systems, vol 648. Springer, Cham. https://doi.org/10.1007/978-3-031-27524-1_11

Download citation

Publish with us

Policies and ethics