Skip to main content

Bio-inspired Heterogeneity in Swarm Robots

  • Conference paper
  • First Online:
Innovations in Bio-Inspired Computing and Applications (IBICA 2022)

Abstract

A recent paradigm shift in swarm intelligence research has changed requirements of bio-inspired algorithms so drastically. During these two decades, swarm intelligence researchers have gradually realized that they focused too much on homogeneity in design of the algorithms. Those algorithms were primarily inspired by direct observation of self-organizing systems of various animal swarms so that requirements of the algorithms were based on homogeneous functionality. Meanwhile, the advent of swarm robots has revealed that real-world electromechanical agent robots that are called swarm robots inevitably involve heterogeneity for fulfillment of multi-functional roles. The algorithms for actuating such multi-functional robots demand involvement of heterogeneity in algorithm design. This position paper briefly discusses how such paradigm shift changed the philosophy of algorithm design and describes requirements for such design in bio-inspired computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burd, M., Archer, D., Aranwela, N., Stradling, D.J.: Traffic dynamics of the leaf-cutting ant. Atta cephalotes. Am. Nat. 159(3), 283–293 (2002)

    Article  Google Scholar 

  2. Pratt, S.C.: Quorum sensing by encounter rates in the ant Temnothorax albipennis. Behav. Ecol. 16(2), 488–496 (2005)

    Article  Google Scholar 

  3. Franks, N.R., Dornhaus, A., Best, C.S., Jones, E.L.: Decision making by small and large house-hunting ant colonies: one size fits all. Anim. Behav. 72(3), 611–616 (2006)

    Article  Google Scholar 

  4. Trianni, V., Tuci, E., Passino, K.M., Marshall, J.A.R.: Swarm cognition: an interdisciplinary approach to the study of self-organising biological collectives. Swarm Intell. 5(1), 3–18 (2011)

    Article  Google Scholar 

  5. Garnier, S., et al.: The embodiment of cockroach aggregation behavior in a group of micro-robots. Artif. Life 14(4), 387–408 (2008)

    Article  Google Scholar 

  6. Bonabeau, E., et al.: A model for the emergence of pillars, walls and royal chambers in termite nests. Philos. Trans. R. Soc. B 353(1375), 1561–1576 (1998)

    Article  Google Scholar 

  7. Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artif. Life 5(2), 97–116 (1999)

    Article  Google Scholar 

  8. Ward, A.J.W., Krause, J., Sumpter, D.J.T.: Quorum decision-making in foraging fish shoals. PLoS ONE 7(3), e32411 (2012)

    Article  Google Scholar 

  9. Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-organization in Biological Systems. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

  10. Sumpter, D.J.T.: Collective Animal Behavior. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

  11. Dorigo, M., Theraulaz, G., Trianni, V.: Swarm robotics: past, present, and future. Proc. IEEE 109(7), 1152–1165 (2021)

    Article  Google Scholar 

  12. Rostami, M., Berahmand, K., Nasiri, E., Forouzandeh, S.: Review of swarm intelligence-based feature selection methods. Eng. Appl. Artif. Intell. 100, 104210 (2021)

    Article  Google Scholar 

  13. Rooban, S., Javaraiu, M., Swamidason, I.T.J., Sagar, P.P.: A detailed review of swarm robotics and its significance. In: 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), pp. 797–802. IEEE Press, New York (2022). https://doi.org/10.1109/ICSCDS53736.2022.9760883

  14. Youssefi, K.A.-R., Rouhani, M., Mashhadi, H.R., Elmenreich, W.: A swarm intelligence-based robotic search algorithm integrated with game theory. Appl. Soft Comput. 122, 108873 (2022)

    Article  Google Scholar 

  15. Dorigo, M., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robot Autom. Mag. 20(4), 60–71 (2013)

    Google Scholar 

  16. Alhafnawi, M., Hauert, S., O’Dowd., P.: Robotic canvas: interactive painting onto robot swarms. In: 2020 Conference on Artificial Life, pp. 163–170. The MIT Press, Cambridge (2020). https://doi.org/10.1162/isal_a_00285

  17. Holland, O., Melhuish, C.: Stimergy, self-organization, and sorting in collective robotics. Artif. Life 5(2), 173–202 (1999)

    Article  Google Scholar 

  18. Jeanson, R., Weidenmüller, A.: Interindividual variability in social insects - proximate causes and ultimate consequences. Biol. Rev. 89(3), 671–687 (2014)

    Article  Google Scholar 

  19. Ferrante, E., Turgut, A.E., Duéñez-Guzmán, E., Dorigo, M., Wenseleers, T.: Evolution of self-organized task specialization in robot swarms. PLoS Comput. Biol. 11(8), e1004273 (2015)

    Article  Google Scholar 

  20. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59496-5_337

    Chapter  Google Scholar 

  21. Sasaki, H: Modeling ant nest relocation at low active ratio by particle swarm optimization. In: 21st IEEE Congress on Evolutionary Computation, pp. 594–603. IEEE Press, New York (2019). https://doi.org/10.1109/CEC.2019.8789942

  22. Sasaki, H: Modeling fast and robust ant nest relocation using particle swarm optimization. In: 2019 Conference on Artificial Life, pp. 626–33. The MIT Press, Cambridge (2019). https://doi.org/10.1162/isal_a_00231

  23. Sasaki, H.: Emulating heterogeneity of individuals and visualizing its influence on ant swarm migration. Appl. Artif. Intell. 36(1), e2138120 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyasu Sasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sasaki, H. (2023). Bio-inspired Heterogeneity in Swarm Robots. In: Abraham, A., Bajaj, A., Gandhi, N., Madureira, A.M., Kahraman, C. (eds) Innovations in Bio-Inspired Computing and Applications. IBICA 2022. Lecture Notes in Networks and Systems, vol 649. Springer, Cham. https://doi.org/10.1007/978-3-031-27499-2_13

Download citation

Publish with us

Policies and ethics