Skip to main content

A Comparative Study of Adaptative Learning Algorithms for Students’ Performance Prediction: Application in a Moroccan University Computer Science Course

  • Conference paper
  • First Online:
International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 637))

Abstract

Students’ Performance prediction has attracted the interest of many researchers. Predictive models that predict whether a learner will complete a task successfully or not have several applications. Such models are used by Intelligent Tutoring Systems (ITS) to determine students’ skills. The measurement of students’ performance during their progress can provide critical information to students, teachers, and administrators. In this paper, we are going to evaluate and compare three models PFA, IRT and BKT on three datasets: ASSISTment, Cognitive Tutor, and a set of data extracted from learners' traces when they interact with a MOOC platform of a Moroccan university computer science course.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fasihuddin, H.A., Skinner, G.D., Athauda, R.I.: Boosting the opportunities of open learning (MOOCs) through learning theories. GSTF J. Comput. (JoC) 3(3), 1–6 (2013). https://doi.org/10.7603/s40601-013-0031-z

    Article  Google Scholar 

  2. Hernández-Blanco, A., Herrera-Flores, B., Tomás, D., Navarro-Colorado, B.: A systematic review of deep learning approaches to educational data mining. Complexity 2019, e1306039 (2019). https://doi.org/10.1155/2019/1306039

    Article  Google Scholar 

  3. Liu, D., Zhang, Y., Zhang, J., Li, Q., Zhang, C., Yin, Y.: Multiple features fusion attention mechanism enhanced deep knowledge tracing for student performance prediction. IEEE Access 8, 194894–194903 (2020). https://doi.org/10.1109/ACCESS.2020.3033200

    Article  Google Scholar 

  4. Al-Jarrah, O.Y., Yoo, P.D., Muhaidat, S., Karagiannidis, G.K., Taha, K.: Efficient machine learning for big data: a review. Big Data Res. 2, 87–93 (2015). https://doi.org/10.1016/j.bdr.2015.04.001

    Article  Google Scholar 

  5. Li, J.: Evaluating the Effects of BKT-LSTM on Students’ Learning Performance (2021). https://hammer.purdue.edu/articles/thesis/Evaluating_the_Effects_of_BKT-LSTM_on_Students_Learning_Performance/17126693/1

  6. DiBello, L.V., Roussos, L.A., Stout, W.: 31A review of cognitively diagnostic assessment and a summary of psychometric models. In: Rao, C.R. and Sinharay, S. (eds.) Handbook of Statistics, pp. 979–1030. Elsevier (2006)

    Google Scholar 

  7. Corbett, A.T., Anderson, J.R.: Knowledge tracing: Modeling the acquisition of procedural knowledge. User Model User-Adap Inter. 4, 253–278 (1994). https://doi.org/10.1007/BF01099821

    Article  Google Scholar 

  8. Thai-Nghe, N., Drumond, L., Krohn-Grimberghe, A., Schmidt-Thieme, L.: Recommender system for predicting student performance. Procedia Comput. Sci. 1, 2811–2819 (2010). https://doi.org/10.1016/j.procs.2010.08.006

    Article  Google Scholar 

  9. Piech, C., et al.: Deep knowledge tracing. In: Advances in Neural Information Processing Systems. Curran Associates, Inc. (2015)

    Google Scholar 

  10. Pardos, Z.A., Heffernan, N.T.: Modeling individualization in a Bayesian networks implementation of knowledge tracing. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 255–266. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13470-8_24

    Chapter  Google Scholar 

  11. Pandey, S., Karypis, G.: A self-attentive model for knowledge tracing. arXiv:1907.06837 [cs, stat] (2019)

  12. Feng, M., Heffernan, N., Koedinger, K.: Addressing the assessment challenge with an online system that tutors as it assesses. User Model. User-Adapt. Interact. 19, 243–266 (2009). https://doi.org/10.1007/s11257-009-9063-7

    Article  Google Scholar 

  13. Su, Y., et al.: Exercise-enhanced sequential modeling for student performance prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  14. Klingler, S., Käser, T., Solenthaler, B., Gross, M.: On the performance characteristics of latent-factor and knowledge tracing models. international educational data mining society (2015)

    Google Scholar 

  15. de la Torre, J.: DINA model and parameter estimation: a didactic. J. Educ. Behav. Stat. 34, 115–130 (2009). https://doi.org/10.3102/1076998607309474

    Article  Google Scholar 

  16. Cen, H., Koedinger, K., Junker, B.: Learning factors analysis – a general method for cognitive model evaluation and improvement. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 164–175. Springer, Heidelberg (2006). https://doi.org/10.1007/11774303_17

    Chapter  Google Scholar 

  17. Pavlik, P.I., Cen, H., Koedinger, K.R.: Performance factors analysis --a new alternative to knowledge tracing. In: Proceedings of the 2009 conference on Artificial Intelligence in Education: Building Learning Systems that Care: From Knowledge Representation to Affective Modelling, pp. 531–538. IOS Press, NLD (2009)

    Google Scholar 

  18. Wu, R., Liu, Q., Liu, Y., Chen, E., Su, Y., Chen, Z., Hu, G.: Cognitive modelling for predicting examinee performance. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  19. Eagle, M., et al.: Estimating Individual differences for student modeling in intelligent tutors from reading and pretest data. In: Micarelli, A., Stamper, J., Panourgia, K. (eds.) ITS 2016. LNCS, vol. 9684, pp. 133–143. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39583-8_13

    Chapter  Google Scholar 

  20. Khajah, M.M., Wing, R., Lindsey, R.V., Mozer, M.: Integrating latent-factor and knowledge-tracing models to predict individual differences in learning. In: EDM (2014)

    Google Scholar 

  21. Hwang, C.-S., Su, Y.-C.: Unified clustering locality preserving matrix factorization for student performance prediction. IAENG Int. J. Comput. Sci. 42, 245–253 (2015)

    Google Scholar 

  22. Thai-Nghe, N., Schmidt-Thieme, L.: Multi-relational factorization models for student modeling in intelligent tutoring systems. In: 2015 Seventh International Conference on Knowledge and Systems Engineering (KSE), pp. 61–66 (2015)

    Google Scholar 

  23. Chen, Y., et al.: Tracking knowledge proficiency of students with educational priors. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 989–998. Association for Computing Machinery, New York (2017)

    Google Scholar 

  24. Deng, L., Hinton, G., Kingsbury, B.: New types of deep neural network learning for speech recognition and related applications: an overview. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8599–8603 (2013)

    Google Scholar 

  25. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3642–3649 (2012)

    Google Scholar 

  26. Uçar, A., Demir, Y., Güzeliş, C.: Object recognition and detection with deep learning for autonomous driving applications. SIMULATION 93, 759–769 (2017). https://doi.org/10.1177/0037549717709932

    Article  Google Scholar 

  27. Zhong, S., Liu, Y., Li, B., Long, J.: Query-oriented unsupervised multi-document summarization via deep learning model. Expert Syst. Appl. 42, 8146–8155 (2015). https://doi.org/10.1016/j.eswa.2015.05.034

    Article  Google Scholar 

  28. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  29. Slater, S., Baker, R.S.: Degree of error in Bayesian knowledge tracing estimates from differences in sample sizes. Behaviormetrika 45(2), 475–493 (2018). https://doi.org/10.1007/s41237-018-0072-x

    Article  Google Scholar 

  30. Zhou, T., Sheng, H., Howley, I.: Assessing post-hoc explainability of the BKT algorithm. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society. pp. 407–413. Association for Computing Machinery, New York (2020)

    Google Scholar 

  31. Wilson, M., De Boeck, P.: Descriptive and explanatory item response models. In: De Boeck, P., Wilson, M. (eds.) Explanatory Item Response Models: A Generalized Linear and Nonlinear Approach, pp. 43–74. Springer, New York, NY (2004)

    Chapter  MATH  Google Scholar 

  32. Rahim, A., Haryanto, H.: Implementation of item response theory (IRT) rasch model in quality analysis of final exam tests in mathematics. Jere 10, 57–65 (2021). https://doi.org/10.15294/jere.v10i2.51802

  33. Camminatiello, I., Gallo, M., Menini, T.: The rasch model for evaluating italian student performance. J. Appl. Quant. Methods 5, 331–349 (2010)

    Google Scholar 

  34. An, X., Yung, Y.: Item response theory: what it is and how you can use the IRT procedure to apply it. SAS Institute Inc., Cary, NC (2014)

    Google Scholar 

  35. Gong, Y., Beck, J.E., Heffernan, N.T.: Comparing knowledge tracing and performance factor analysis by using multiple model fitting procedures. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010. LNCS, vol. 6094, pp. 35–44. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13388-6_8

    Chapter  Google Scholar 

  36. Papousek, J., Pelánek, R., Stanislav, V.: Adaptive practice of facts in domains with varied prior knowledge. In: EDM (2014)

    Google Scholar 

  37. Ritter, S., Carlson, R., Sandbothe, M., Fancsali, S.E.: Carnegie Learning’s adaptive learning products. In: 8th Educational Data Mining. 2015 (2015)

    Google Scholar 

  38. Hmedna, B., El Mezouary, A., Baz, O.: A predictive model for the identification of learning styles in MOOC environments. Clust. Comput. 23(2), 1303–1328 (2019). https://doi.org/10.1007/s10586-019-02992-4

    Article  Google Scholar 

  39. Badrinath, A., Wang, F., Pardos, Z.: pyBKT: An Accessible Python Library of Bayesian Knowledge Tracing Models. arXiv:2105.00385 [cs]. (2021)

  40. Minn, S., Yu, Y., Desmarais, M.C., Zhu, F., Vie, J.-J.: deep knowledge tracing and dynamic student classification for knowledge tracing. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 1182–1187 (2018)

    Google Scholar 

  41. Galyardt, A., Goldin, I.: Predicting performance during tutoring with models of recent performance. arXiv:1501.02732 [cs] (2015)

  42. Beck, J.E., Chang, K.-M.: Identifiability: a fundamental problem of student modeling. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 137–146. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73078-1_17

    Chapter  Google Scholar 

  43. Wilson, K.H., et al.: Estimating student proficiency: deep learning is not the panacea. In: Neural Information Processing Systems, Workshop on Machine Learning for Education (2016)

    Google Scholar 

  44. Sacksick, M.: Evaluer les apprentissages : comparaison de deux techniques de diagnostic de connaissance. In: EIAH 2019, Paris, France (2019)

    Google Scholar 

  45. Goldin, I.M., Galyardt, A.: Convergent validity of a student model: recent-performance factors analysis. In: EDM, pp. 548–551 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Higher Education, Scientific Research and Innovation, the Digital Development Agency (DDA) and the CNRST of Morocco under Project No. 451/2020 (Smart Learning).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayoub Ait Lahcen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arkiza, M., Hakkal, S., Oumaira, I., Ait Lahcen, A. (2023). A Comparative Study of Adaptative Learning Algorithms for Students’ Performance Prediction: Application in a Moroccan University Computer Science Course. In: Kacprzyk, J., Ezziyyani, M., Balas, V.E. (eds) International Conference on Advanced Intelligent Systems for Sustainable Development. AI2SD 2022. Lecture Notes in Networks and Systems, vol 637. Springer, Cham. https://doi.org/10.1007/978-3-031-26384-2_61

Download citation

Publish with us

Policies and ethics