Skip to main content

Exploration of Neural Network Imputation Methods for Medical Datasets

  • Conference paper
  • First Online:
Advances in Internet, Data & Web Technologies (EIDWT 2023)

Abstract

Datasets, especially those related to medicine, commonly suffer from missing data. The missing data originates from various sources. Examples include ever-changing medical diagnosis and treatment techniques, the absence of lab results, or even data collection errors. Most machine learning methods are trained on dense datasets. The sparse samples are either discarded or filled in with imputation. Imputation methods generate missing data by examining the variables in the relevant samples. Therefore, the performance of subsequence prediction models might be impacted by these methods. In this study, we explore neural network-based imputation methods to generate the missing data in medical datasets. The experimental results show that compared with traditional imputation methods, neural network imputation can be more effective in the classification and prediction tasks. We discuss some of the method’s differences and assess their suitability for the dataset’s specific characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Azur, M.J., Stuart, E.A., Frangakis, C., Leaf, P.J.: Multiple imputation by chained equations: what is it and how does it work? Int. J. Methods Psychiatr. Res. 20(1), 40–49 (2011)

    Article  Google Scholar 

  2. Bland, M.: An Introduction to Medical Statistics. Oxford University Press, Oxford (2015)

    MATH  Google Scholar 

  3. Buck, S.F.: A method of estimation of missing values in multivariate data suitable for use with an electronic computer. J. Roy. Statist. Soc.: Ser. B (Methodol.) 22(2), 302–306 (1960)

    MathSciNet  MATH  Google Scholar 

  4. Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053–2080 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, W., Wang, D., Li, J., Zhou, H., Li, L., Li, Y.: Brits: bidirectional recurrent imputation for time series. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  6. cBioPortal: Prostate Adenocarcinoma (TCGA Firehose Legacy). www.cbioportal.org/study/summary?id=prad_tcga

  7. Du, W., Côté, D., Liu, Y.: Saits: Self-attention-based imputation for time series. arXiv preprint arXiv:2202.08516 (2022)

  8. Hastie, T., Mazumder, R., Lee, J.D., Zadeh, R.: Matrix completion and low-rank SVD via fast alternating least squares. J. Mach. Learn. Res. 16(1), 3367–3402 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Hieronymus, H., et al.: Copy number alteration burden predicts prostate cancer relapse. Proc. Nat. Acad. Sci. 111(30), 11139–11144 (2014)

    Article  Google Scholar 

  10. Hoadley, K.A., et al.: Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173(2), 291–304 (2018)

    Article  Google Scholar 

  11. Jamshidian, M., Bentler, P.M.: Ml estimation of mean and covariance structures with missing data using complete data routines. J. Educ. Behav. Stat. 24(1), 21–24 (1999)

    Article  Google Scholar 

  12. Jarrett, D., Cebere, B.C., Liu, T., Curth, A., van der Schaar, M.: Hyperimpute: generalized iterative imputation with automatic model selection. In: International Conference on Machine Learning, pp. 9916–9937. PMLR (2022)

    Google Scholar 

  13. Jiang, C., Yang, Z.: CKNNI: an improved KNN-based missing value handling technique. In: Huang, D.-S., Han, K. (eds.) ICIC 2015. LNCS (LNAI), vol. 9227, pp. 441–452. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22053-6_47

    Chapter  Google Scholar 

  14. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  15. Kyono, T., Zhang, Y., Bellot, A., van der Schaar, M.: Miracle: causally-aware imputation via learning missing data mechanisms. Adv. Neural Inf. Proces. Syst. 34, 23806–23817 (2021)

    Google Scholar 

  16. Lall, R., Robinson, T.: The MIDAS touch: accurate and scalable missing-data imputation with deep learning. Polit. Anal. 30(2), 179–196 (2022)

    Article  Google Scholar 

  17. Lee, J.Y., Styczynski, M.P.: NS-kNN: a modified k-nearest neighbors approach for imputing metabolomics data. Metabolomics 14(12), 1–12 (2018)

    Article  Google Scholar 

  18. Liang, C., Zhang, L., Wan, Z., Li, D., Li, D., Li, W.: An improved kNN method based on spearman’s rank correlation for handling medical missing values. In: 2022 International Conference on Machine Learning and Knowledge Engineering (MLKE), pp. 139–142. IEEE (2022)

    Google Scholar 

  19. Little, R.J., Rubin, D.B.: Statistical Analysis with Missing Data, vol. 793. John Wiley, Hoboken (2019)

    MATH  Google Scholar 

  20. Luo, Y., Zhang, Y., Cai, X., Yuan, X.: E2gan: end-to-end generative adversarial network for multivariate time series imputation. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 3094–3100. AAAI Press (2019)

    Google Scholar 

  21. Mattei, P.A., Frellsen, J.: Miwae: deep generative modelling and imputation of incomplete data sets. In: International Conference on Machine Learning, pp. 4413–4423. PMLR (2019)

    Google Scholar 

  22. Muzellec, B., Josse, J., Boyer, C., Cuturi, M.: Missing data imputation using optimal transport. In: International Conference on Machine Learning, pp. 7130–7140. PMLR (2020)

    Google Scholar 

  23. Rubin, D.B.: Inference and missing data. Biometrika 63(3), 581–592 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Srebro, N., Rennie, J., Jaakkola, T.: Maximum-margin matrix factorization. In: Advances in Neural Information Processing Systems, vol. 17 (2004)

    Google Scholar 

  25. Stekhoven, D.J., Bühlmann, P.: Missforest-non-parametric missing value imputation for mixed-type data. Bioinformatics 28(1), 112–118 (2012)

    Article  Google Scholar 

  26. Stopsack, K.H., et al.: Oncogenic genomic alterations, clinical phenotypes, and outcomes in metastatic castration-sensitive prostate cancer. Clin. Cancer Res. 26(13), 3230–3238 (2020)

    Article  Google Scholar 

  27. Yoon, J., Jordon, J., Schaar, M.: Gain: Missing data imputation using generative adversarial nets. In: International Conference on Machine Learning, pp. 5689–5698. PMLR (2018)

    Google Scholar 

Download references

Acknowledgments.

This research was partially supported by Chiang Mai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivatchai Kaveeta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaveeta, V., Sugunnasil, P., Natwichai, J. (2023). Exploration of Neural Network Imputation Methods for Medical Datasets. In: Barolli, L. (eds) Advances in Internet, Data & Web Technologies. EIDWT 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 161. Springer, Cham. https://doi.org/10.1007/978-3-031-26281-4_46

Download citation

Publish with us

Policies and ethics