Skip to main content

Inverse Dynamic Modeling of a Parallel Robot for Lower Limb Rehabilitation

  • Conference paper
  • First Online:
Proceedings of SYROM 2022 & ROBOTICS 2022 (IISSMM 2022)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 127))

Abstract

This paper presents the development of the inverse dynamic model for the RECOVER parallel robot, which is used in lower limbs stroke rehabilitation, more precisely in rehabilitation exercises for hip flexion/extension, knee flexion, plantar flexion/dorsiflexion, and inversion/eversion of the ankle. The inverse dynamic model is obtained using the concept of virtual work and the lumped masses approach. The developed model facilitates in-depth analysis of the dynamic capabilities of the RECOVER robot and the development of a precise and effective robotic-assisted procedure for lower limb rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pyo, S., Yoon, J., Oh, M.-K.: A novel robotic knee device with stance control and its kinematic weight optimization for rehabilitation. Robotica 32, 1245–1263 (2014). https://doi.org/10.1017/S0263574714001453

    Article  Google Scholar 

  2. Prieto, P., Auat, F., Escobar, M., Vallejos, R., Maldonado, P., Larrain, C., Serey, M.: Robotic Care: A Low Cost Design to Assist Therapy for Brain Stroke Rehabilitation. Proceedings of the Design Society: International Conference on Engineering Design. 1, 975–984 (2019). https://doi.org/10.1017/dsi.2019.103

    Article  Google Scholar 

  3. Nef, T., Mihelj, M., Riener, R.: ARMin: a robot for patient-cooperative arm therapy. Med Biol Eng Comput. 45, 887–900 (2007). https://doi.org/10.1007/s11517-007-0226-6

    Article  Google Scholar 

  4. Cafolla, D., Russo, M., Carbone, G.: Design of CUBE, a cable-driven device for upper and lower limb exercising. In: Carbone, G., Ceccarelli, M., Pisla, D. (eds.) New trends in medical and service robotics, pp. 255–263. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  5. Banica, A., Gherman, B., Tohanean, N., Antal, T., Pisla, A., Abrudan, C., Carbone, G., Pisla, D.: Inverse dynamic modeling of a parallel elbow rehabilitation robot for spasticity treatment. In: Müller, A., Brandstötter, M. (eds.) Advances in service and industrial robotics, pp. 392–400. Springer International Publishing, Cham (2022)

    Chapter  Google Scholar 

  6. Vaida, C., Birlescu, I., Pisla, A., Ulinici, I., Tarnita, D., Carbone, G., Pisla, D.: Systematic design of a parallel robotic system for lower limb rehabilitation. IEEE Access. 8, 34522–34537 (2020). https://doi.org/10.1109/ACCESS.2020.2974295

    Article  Google Scholar 

  7. Carbone, G., Gherman, B., Ulinici, I., Vaida, C., Pisla, D.: Design issues for an inherently safe robotic rehabilitation device. In: Ferraresi, C., Quaglia, G. (eds.) Advances in service and industrial robotics, pp. 1025–1032. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  8. Bouri, M., Le Gall, B., Clavel, R.: A new concept of parallel robot for rehabilitation and fitness: The Lambda. In: 2009 IEEE International conference on robotics and biomimetics (ROBIO), pp. 2503–2508 (2009)

    Google Scholar 

  9. Akdoğan, E., Adli, M.A.: The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot. Mechatronics 21, 509–522 (2011). https://doi.org/10.1016/j.mechatronics.2011.01.005

    Article  Google Scholar 

  10. Vaida, C., Birlescu, I., Pisla, A., Carbone, G., Plitea, N., Ulinici, I., Gherman, B., Puskas, F., Tucan, P., Pisla, D.: RAISE−An innovative parallel robotic system for lower limb rehabilitation. In: Carbone, G., Ceccarelli, M., Pisla, D. (eds.) New trends in medical and service robotics, pp. 293–302. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  11. Abdellatif, H., Heimann, B.: Computational efficient inverse dynamics of 6-DOF fully parallel manipulators by using the Lagrangian formalism. Mech. Mach. Theory 44, 192–207 (2009). https://doi.org/10.1016/j.mechmachtheory.2008.02.003

    Article  MATH  Google Scholar 

  12. Plitea, N., Szilaghyi, A., Cocorean, D., Vaida, C., Pisla, D.: Inverse dynamics and simulation of A 5-DOF modular parallel robot used in brachytherapy. Proceedings of the Romanian academy series A−Mathematics physics technical sciences information science. 17, 67–75 (2016)

    MathSciNet  Google Scholar 

  13. Dasgupta, B., Mruthyunjaya, T.S.: Closed-form dynamic equations of the general stewart platform through the newton-euler approach. Mech. Mach. Theory 33, 993–1012 (1998). https://doi.org/10.1016/S0094-114X(97)00087-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, Y., Xu, Q.: Dynamic analysis of a modified DELTA parallel robot for cardiopulmonary resuscitation. In: 2005 IEEE/RSJ International conference on intelligent robots and systems, pp. 233–238 (2005)

    Google Scholar 

  15. Gherman, B., Birlescu, I., Plitea, N., Carbone, G., Tarnita, D., Pisla, D.: On the singularity-free workspace of a parallel robot for lower-limb rehabilitation. Proceedings of The Romanian Academy, Series A. 20, 383–391 (2019)

    MathSciNet  Google Scholar 

  16. Nadas, I., Gherman, B., Albert, S., Surducan, V., Pop, N., Carbone, G., Pisla, D.: Innovative development of a parallel robotic system for lower limb rehabilitation. Acta Tech Napocensis−Series: Appl Math, Mech, Eng. 64(1-S2), (2021)

    Google Scholar 

  17. Pisla, D., Nadas, I., Tucan, P., Albert, S., Carbone, G., Antal, T., Banica, A., Gherman, B.: Development of a control system and functional validation of a parallel robot for lower limb rehabilitation. Actuators. 10, 277 (2021). https://doi.org/10.3390/act10100277

    Article  Google Scholar 

  18. Nadas, I., Tucan, P., Gherman, B., Banica, A., Rednic, V., Carbone, G., Pisla, D.: On the design and validation of a parallel robot for lower limb rehabilitation. Rom. J. Tech. Sciences. Appl. Mechanics. 67, 187–187 (2022)

    Google Scholar 

  19. Carbone, G., Plitea, N., Gherman, B.G., Vaida, C., Pisla, D., Birlescu, I., Craciun, F., Nadas, I., Tucan, P., Pop, N.: Parallel Robot for Medical Recovery of Lower Limbs. Patent Number: RO133815B1.Publication Date: 2020–02–28 Technical University of Cluj Napoca.

    Google Scholar 

  20. Plitea, N., Gherman, B., Carbone, G., Ceccarelli, M., Vaida, C., Banica, A., Pisla, D., Pisla, A.: Kinematic analysis of an exoskeleton-based robot for elbow and wrist rehabilitation. In: Carvalho, J.C.M., Martins, D., Simoni, R., Simas, H. (eds.) Multibody mechatronic systems, pp. 424–433. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  21. Gherman, B., Pisla, D., Vaida, C., Plitea, N.: Development of inverse dynamic model for a surgical hybrid parallel robot with equivalent lumped masses. Robot. Comput.-Integr. Manuf. 28, 402–415 (2012). https://doi.org/10.1016/j.rcim.2011.11.003

    Article  Google Scholar 

  22. NX | Siemens Software, https://www.plm.automation.siemens.com/global/en/products/nx/

Download references

Acknowledgements

This work was supported by a grant from the Romanian Ministry of Research and Innovation, CCCDI—UEFISCDI, project number PN-III-P2-2.1-PED-2021-3430/608PED/2022 (Hope2Walk) within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gherman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nadas, I. et al. (2023). Inverse Dynamic Modeling of a Parallel Robot for Lower Limb Rehabilitation. In: Doroftei, I., Nitulescu, M., Pisla, D., Lovasz, EC. (eds) Proceedings of SYROM 2022 & ROBOTICS 2022. IISSMM 2022. Mechanisms and Machine Science, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-031-25655-4_19

Download citation

Publish with us

Policies and ethics