Skip to main content

Mechanical Search on Shelves with Efficient Stacking and Destacking of Objects

  • Conference paper
  • First Online:
Robotics Research (ISRR 2022)

Abstract

Although stacking objects increases shelves storage efficiency, the lack of visibility and accessibility makes the mechanical search problem of revealing and extracting a target object difficult for robots. In this paper, we extend the lateral-access mechanical search problem to shelves with stacked items and introduce two novel policies—Distribution Area Reduction for Stacked Scenes (DARSS) and Monte Carlo Tree Search for Stacked Scenes (MCTSSS)—that use destacking and restacking actions. MCTSSS improves on prior lookahead policies by considering three future states after each potential action. Experiments with 3600 simulated and 18 physical trials with a Fetch robot equipped with a blade and suction cup suggest that these policies can reveal the target object with 82–100% success in simulation outperforming the baseline by up to 66%, and can achieve 67–100% success in physical experiments. DARSS outperforms MCTSSS on median number of steps to reveal the target, but MCTSSS has a higher success rate in physical experiments, suggesting its robustness to perception noise. See https://sites.google.com/berkeley.edu/stax-ray for supplementary material.

H. Huang and L. Fu—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Danielczuk, M., et al.: Mechanical search: multi-step retrieval of a target object occluded by clutter. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 1614–1621. IEEE (2019)

    Google Scholar 

  2. Kurenkov, A., et al.: Visuomotor mechanical search: learning to retrieve target objects in clutter. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8408–8414. IEEE (2020)

    Google Scholar 

  3. Yang, Y., Liang, H., Choi, C.: A deep learning approach to grasping the invisible. IEEE Robot. Autom. Lett. 5(2), 2232–2239 (2020)

    Article  Google Scholar 

  4. Zeng, A., Song, S., Welker, S., Lee, J., Rodriguez, A., Funkhouser, T.: Learning synergies between pushing and grasping with self-supervised deep reinforcement learning. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4238–4245. IEEE (2018)

    Google Scholar 

  5. Bejjani, W., Agboh, W.C., Dogar, M.R., Leonetti, M.: Occlusion-aware search for object retrieval in clutter. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4678–4685. IEEE (2021)

    Google Scholar 

  6. Gupta, M., Rühr, T., Beetz, M., Sukhatme, G.S.: Interactive environment exploration in clutter. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5265–5272. IEEE (2013)

    Google Scholar 

  7. Huang, H., et al.: Mechanical search on shelves using lateral access x-ray. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2045–2052. IEEE (2021)

    Google Scholar 

  8. Chen, L.Y., Huang, H., Danielczuk, M., Ichnowski, J., Goldberg, K.: Optimal shelf arrangement to minimize robot retrieval time. In: 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE), pp. 993–1000. IEEE (2022)

    Google Scholar 

  9. Li, J.K., Hsu, D., Lee, W.S.: Act to see and see to act: POMDP planning for objects search in clutter. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5701–5707. IEEE (2016)

    Google Scholar 

  10. Wang, R., Miao, Y., Bekris, K.E.: Efficient and high-quality prehensile rearrangement in cluttered and confined spaces. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 1968–1975. IEEE (2022)

    Google Scholar 

  11. Motoda, T., Petit, D., Wan, W., Harada, K.: Bimanual shelf picking planner based on collapse prediction. In: 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE), pp. 510–515. IEEE (2021)

    Google Scholar 

  12. Dogar, M.R., Koval, M.C., Tallavajhula, A., Srinivasa, S.S.: Object search by manipulation. Auton. Robots 36(1), 153–167 (2013). https://doi.org/10.1007/s10514-013-9372-x

    Article  Google Scholar 

  13. Zeng, A., et al.: Multi-view self-supervised deep learning for 6D pose estimation in the amazon picking challenge. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1386–1383. IEEE (2017)

    Google Scholar 

  14. Huang, H., et al.: Mechanical search on shelves using a novel “Bluction” tool. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 6158–6164. IEEE (2022)

    Google Scholar 

  15. Gupta, M., Sukhatme, G.: Interactive perception in clutter. In: The RSS 2012 Workshop on Robots in Clutter: Manipulation, Perception and Navigation in Human Environments, vol. 7. Citeseer (2012)

    Google Scholar 

  16. Moldovan, B., De Raedt, L.: Occluded object search by relational affordances. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 169–174. IEEE (2014)

    Google Scholar 

  17. Wong, L.L., Kaelbling, L.P., Lozano-Pérez, T.: Manipulation-based active search for occluded objects. In: 2013 IEEE International Conference on Robotics and Automation, pp. 2814–2819. IEEE (2013)

    Google Scholar 

  18. Danielczuk, M., Angelova, A., Vanhoucke, V., Goldberg, K.: X-ray: mechanical search for an occluded object by minimizing support of learned occupancy distributions. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9577–9584. IEEE (2020)

    Google Scholar 

  19. Novkovic, T., Pautrat, R., Furrer, F., Breyer, M., Siegwart, R., Nieto, J.: Object finding in cluttered scenes using interactive perception. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 8338–8344. IEEE (2020)

    Google Scholar 

  20. Lou, X., Yang, Y., Choi, C.: Collision-aware target-driven object grasping in constrained environments. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 6364–6370. IEEE (2021)

    Google Scholar 

  21. Zenkri, O., Vien, N.A., Neumann, G.: Hierarchical policy learning for mechanical search. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 1954–1960. IEEE (2022)

    Google Scholar 

  22. Vaskevicius, N., et al.: Object recognition and localization for robust grasping with a dexterous gripper in the context of container unloading. In: 2014 IEEE International Conference on Automation Science and Engineering (CASE), pp. 1270–1277. IEEE (2014)

    Google Scholar 

  23. Lee, A.X., et al.: Beyond pick-and-place: tackling robotic stacking of diverse shapes. In: 5th Annual Conference on Robot Learning (2021)

    Google Scholar 

  24. Furrer, F., et al.: Autonomous robotic stone stacking with online next best object target pose planning. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2350–2356. IEEE (2017)

    Google Scholar 

  25. Landgraf, Z., Scona, R., Laidlow, T., James, S., Leutenegger, S., Davison, A.J.: Simstack: a generative shape and instance model for unordered object stacks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13012–13022 (2021)

    Google Scholar 

  26. Danielczuk, M., Matl, M., Gupta, S., Li, A., Lee, A., Mahler, J., Goldberg, K.: Segmenting unknown 3D objects from real depth images using mask R-CNN trained on synthetic data. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 7283–7290. IEEE (2019)

    Google Scholar 

  27. Kumar, K.N., Essa, I., Ha, S.: Graph-based cluttered scene generation and interactive exploration using deep reinforcement learning. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 7521–7527. IEEE (2022)

    Google Scholar 

  28. Mahler, J., et al.: Learning ambidextrous robot grasping policies. Sci. Robot. 4(26), eaau4984 (2019)

    Google Scholar 

  29. Morrison, D., et al.: Cartman: the low-cost cartesian manipulator that won the Amazon robotics challenge. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 7757–7764. IEEE (2018)

    Google Scholar 

  30. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75538-8_7

    Chapter  Google Scholar 

  31. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_29

    Chapter  Google Scholar 

  32. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  33. Ren, T., Chalvatzaki, G., Peters, J.: Extended task and motion planning of long-horizon robot manipulation. arXiv preprint arXiv:2103.05456 (2021)

  34. Funk, N., Chalvatzaki, G., Belousov, B., Peters, J.: Learn2Assemble with structured representations and search for robotic architectural construction. In: Conference on Robot Learning, pp. 1401–1411. PMLR (2022)

    Google Scholar 

  35. Hampali, S., Stekovic, S., Sarkar, S.D., Kumar, C.S., Fraundorfer, F., Lepetit, V.: Monte Carlo scene search for 3D scene understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  36. Kim, B., Lee, K., Lim, S., Kaelbling, L., Lozano-Pérez, T.: Monte Carlo tree search in continuous spaces using voronoi optimistic optimization with regret bounds. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, No. 06, pp. 9916–9924 (2020)

    Google Scholar 

  37. Görner, M., Haschke, R., Ritter, H., Zhang, J.: Moveit! task constructor for task-level motion planning. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 190–196. IEEE (2019)

    Google Scholar 

Download references

Acknowledgements

This research was performed at the AUTOLAB at UC Berkeley in affiliation with the Berkeley AI Research (BAIR) Lab, and the CITRIS “People and Robots” (CPAR) Initiative. The authors were supported in part by donations from Google, Toyota Research Institute, Autodesk, Siemens and by equipment grants from PhotoNeo and NVidia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang Huang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 8084 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, H. et al. (2023). Mechanical Search on Shelves with Efficient Stacking and Destacking of Objects. In: Billard, A., Asfour, T., Khatib, O. (eds) Robotics Research. ISRR 2022. Springer Proceedings in Advanced Robotics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-25555-7_14

Download citation

Publish with us

Policies and ethics