Skip to main content

Prediction of Energy Consumption in Residential Buildings Using Type-2 Fuzzy Wavelet Neural Network

  • Conference paper
  • First Online:
15th International Conference on Applications of Fuzzy Systems, Soft Computing and Artificial Intelligence Tools – ICAFS-2022 (ICAFS 2022)

Abstract

Residential buildings use a significant part of the total energy of the countries. The utilisation of energy is defined by consumer occupancy, construction materials used in buildings. The timely changes of these factors lead to vague and imprecise representations of energy consumption prediction. Fuzzy logic is a more suitable approach for modelling this problem. In this paper, type-2 fuzzy wavelet neural networks (T2-FWNN) is proposed for modelling the energy consumption prediction of residential buildings. The system implements type-2 fuzzy reasoning using wavelet neural network technology. A gradient descent algorithm using a cross-validation approach has been applied for the construction of T2-FWNN system. The learning of T2-FWNN system is based on an adaptive procedure that adjusts learning rates for stabilisation of training. The constructed system is used for the prediction of energy demand in residential buildings of Northern Cyprus. The presented comparative results prove the effectiveness of the constructed T2-FWNN model and the suitability of the T2-FWNN in the prediction of energy demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amasyali, K., El-Gohary, N.M.: A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energ. Rev. 81, 1192–1205 (2018). https://doi.org/10.1016/j.rser.2017.04.095

    Article  Google Scholar 

  2. Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy .ings 49, 560–567 (2012). https://doi.org/10.1016/j.enbuild.2012.03.003

    Article  Google Scholar 

  3. Simulation Research Group, Lawrence Berkley National Lab, Overview of DOE 2.2 (1998). http://ww.doe2.com/

  4. Crawley, D.B., et al.: EnergyPlus: creating a new-generation building energy simulation program, Energ. Build. 33(4), 319–331 (2001). https://doi.org/10.1016/S0378-7788(00)00114-6

  5. Strachan, P.A., Kokogiannakis, G., Macdonald, I.A.: History and development of validation with the ESP-r simulation program. Build. Environ. 43(4), 601–609 (2008). https://doi.org/10.1016/j.buildenv.2006.06.025

    Article  Google Scholar 

  6. Yan, D., Xia, J., Tang, W., Song, F., Hang, X.Z., Jiang, Y.: DeST—an integrated building simulation toolkit part I: fundamentals. Build. Simul. 1(2), 95–110 (2008). https://doi.org/10.1007/s12273-008-8118-8

    Article  Google Scholar 

  7. Fumo, N.: A review on the basics of building energy estimation. Renew. Sustain. Energ. Rev. 31, 53–60 (2014). https://doi.org/10.1016/j.rser.2013.11.040

    Article  Google Scholar 

  8. Kumar, R., Aggarwal, R., Sharma, J.: Energy analysis of a building using artificial neural network: a review. Energ. Build. 65, 352–360 (2013). https://doi.org/10.1016/j.enbuild.2013.06.007

    Article  Google Scholar 

  9. Li, Q., Meng, Q., Cai, J., Yoshino, H., Mochida, A.: Applying support vector machine to predict hourly cooling load in the building. Appl. Energ. 86, 2249–2256 (2009). https://doi.org/10.1016/j.apenergy.2008.11.035

    Article  Google Scholar 

  10. Hong, W.C.: Electric load forecasting by support vector model. Appl. Math. Model 33(5), 2444–2454 (2009). https://doi.org/10.1016/j.apm.2008.07.010

    Article  MATH  Google Scholar 

  11. Abiyev, R.H.: Fuzzy wavelet neural network for prediction of electricity consumption. AIEDAM: Artif. Intell. Eng. Des. Anal. Manuf. 23(2), 109–118 (2009). https://doi.org/10.1017/S0890060409000018

  12. Abiyev, R., Abiyev, V.H., Ardil, C: Electricity consumption prediction model using neuro-fuzzy system. World Acad. Sci. Eng. Technol. 8 (2005)

    Google Scholar 

  13. Zadeh, L.H.: The concept of linguistic variable and its application to approximate reasoning. Inf. Sci. 8, 199–249 (1975). https://doi.org/10.1016/0020-0255(75)90036-5

    Article  MathSciNet  MATH  Google Scholar 

  14. Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic System: Introduction and New Directions, 2nd edn, 684 p. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51370-6

  15. Karnik, N.N., Mendel, J.M.: Application of Type-2 fuzzy logic systems to forecasting of time-series. Inf. Sci. 120, 89–111 (1999). https://doi.org/10.1016/S0020-0255(99)00067-5

    Article  MATH  Google Scholar 

  16. Abiyev, R.H.: A Type-2 fuzzy wavelet neural network for time series prediction. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010. LNCS (LNAI), vol. 6098, pp. 518–527. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13033-5_53

    Chapter  Google Scholar 

  17. Abiyev, R.H., Kaynak, O., Alshanableh, T., Mamedov, F.: A Type-2 neuro-fuzzy system based on clustering and gradient techniques applied to system identification and channel equalization. Appl. Soft Comput. 11(1), 1396–1406 (2011). https://doi.org/10.1016/j.asoc.2010.04.011

    Article  Google Scholar 

  18. Abiyev, R.H., Kaynak, O.: Type-2 fuzzy neural structure for identification and control of time-varying plants. IEEE T. Ind. Electron 57(12), 4147–4159 (2010). https://doi.org/10.1109/TIE.2010.2043036

    Article  Google Scholar 

  19. Abiyev, R.H., Kaynak, O., Kayacan, E.: A type-2 fuzzy wavelet neural network for system identification and control. J. Franklin Inst.-Eng. Appl. Math. 350(7), 1658–1685 (2013). https://doi.org/10.1016/j.jfranklin

    Article  MathSciNet  MATH  Google Scholar 

  20. Kayacan, E., Oniz, Y., Aras, A.C., Kaynak, O., Abiyev, R.: A servo system control with time-varying and nonlinear load conditions using Type-2 TSK fuzzy neural system. Appl. Soft Comput. 11(8), 5735–5744 (2011). https://doi.org/10.1016/j.asoc.2011.03.008

    Article  Google Scholar 

  21. Abiyev, R.H: Credit rating using Type-2 fuzzy neural networks. Math. Probl. Eng. (2014). https://doi.org/10.1155/2014/460916

  22. Thuillard, M.: Wavelets in Softcomputing. World Scientific Press, Singapore (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahib Abiyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abiyev, R., Abizada, S. (2023). Prediction of Energy Consumption in Residential Buildings Using Type-2 Fuzzy Wavelet Neural Network. In: Aliev, R.A., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Babanli, M.B., Sadikoglu, F. (eds) 15th International Conference on Applications of Fuzzy Systems, Soft Computing and Artificial Intelligence Tools – ICAFS-2022. ICAFS 2022. Lecture Notes in Networks and Systems, vol 610. Springer, Cham. https://doi.org/10.1007/978-3-031-25252-5_46

Download citation

Publish with us

Policies and ethics