Skip to main content

The Potential of Artificial Intelligence for Achieving Healthy and Sustainable Societies

  • Chapter
  • First Online:
The Ethics of Artificial Intelligence for the Sustainable Development Goals

Abstract

In this chapter we extend earlier work (Vinuesa et al., Nat Commun 11, 2020) on the potential of artificial intelligence (AI) to achieve the 17 Sustainable Development Goals (SDGs) proposed by the United Nations (UN) for the 2030 Agenda. The present contribution focuses on three SDGs related to healthy and sustainable societies, i.e., SDG 3 (on good health), SDG 11 (on sustainable cities), and SDG 13 (on climate action). This chapter extends the previous study within those three goals and goes beyond the 2030 targets. These SDGs are selected because they are closely related to the coronavirus disease 19 (COVID-19) pandemic and also to crises like climate change, which constitute important challenges to our society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alam, N., E.L. Hobbelink, A.-J. van Tienhoven, P.M. van de Ven, E.P. Jansma, and P.W. Nanayakkara. 2014. The Impact of the Use of the Early Warning Score (EWS) on Patient Outcomes: A Systematic Review. Resuscitation 85 (5): 587–594.

    Article  Google Scholar 

  • Ali, S.S., and B.J. Choi. 2020. State-of-the-Art Artificial Intelligence Techniques for Distributed Smart Grids: A Review. Electronics 9 (6): 1030.

    Article  Google Scholar 

  • Allam, Z., and Z.A. Dhunny. 2019. On Big Data, Artificial Intelligence and Smart Cities. Cities 89: 80–91. ISSN 0264-2751. https://doi.org/10.1016/j.cities.2019.01.032.

    Article  Google Scholar 

  • Allen, M., O. Dube, W. Solecki, F. Arag ́on-Durand, W. Cramer, S. Humphreys, M. Kainuma, J. Kala, N. Mahowald, Y. Mulugetta, et al. 2018. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty.

    Google Scholar 

  • Alsrehin, N.O., A.F. Klaib, and A. Magableh. 2019. Intelligent Transportation and Control Systems Using Data Mining and Machine Learning Techniques: A Comprehensive Study. IEEE Access 7: 49830–49857.

    Article  Google Scholar 

  • Aslam, S., A. Khalid, and N. Javaid. 2020. Towards Efficient Energy Management in Smart Grids Considering Microgrids with Day-Ahead Energy Forecasting. Electric Power Systems Research 182: 106232.

    Article  Google Scholar 

  • Ayturan, A., Z. Ayturan, and H. Altun. 2018. Air Pollution Modelling with Deep Learning: A Review. International Journal of Environmental Pollution & Environmental Modelling 1: 58–62.

    Google Scholar 

  • Bag, S., J.H.C. Pretorius, S. Gupta, and Y.K. Dwivedi. 2021. Role of Institutional Pressures and Resources in the Adoption of Big Data Analytics Powered Artificial Intelligence, Sustainable Manufacturing Practices and Circular Economy Capabilities. Technological Forecasting and Social Change 163: 120420.

    Article  Google Scholar 

  • Barnes, E.A., J.W. Hurrell, I. Ebert-Uphoff, C. Anderson, and D. Anderson. 2019. Viewing Forced Climate Patterns Through an AI Lens. Geophysical Research Letters 46 (22): 13389–13398.

    Article  Google Scholar 

  • Beaudoin, M., F. Kabanza, V. Nault, and L. Valiquette. 2016. Evaluation of a Machine Learning Capability for a Clinical Decision Support System to Enhance Antimicrobial Stewardship Programs. Artificial Intelligence in Medicine 68: 29–36.

    Article  Google Scholar 

  • Bejnordi, B.E., M. Veta, P.J. Van Diest, B. Van Ginneken, N. Karssemeijer, G. Litjens, J.A. VanDer Laak, M. Hermsen, Q.F. Manson, M. Balkenhol, et al. 2017. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women with Breast Cancer. JAMA 318 (22): 2199–2210.

    Article  Google Scholar 

  • Berrang-Ford, L., A.J. Sietsma, M. Callaghan, J.C. Minx, P.F. Scheelbeek, N.R. Haddaway, A. Haines, and A.D. Dangour. 2021. Systematic Mapping of Global Research on Climate and Health: A Machine Learning Review. The Lancet Planetary Health 5 (8): e514–e525.

    Article  Google Scholar 

  • Bora, A., S. Balasubramanian, B. Babenko, S. Virmani, S. Venugopalan, A. Mitani, G. de Oliveira Marinho, J. Cuadros, P. Ruamviboonsuk, G.S. Corrado, et al. 2021. Predicting the Risk of Developing Diabetic Retinopathy Using Deep Learning. The Lancet Digital Health 3 (1): e10–e19.

    Article  Google Scholar 

  • Boree, J. 2003. Extended Proper Orthogonal Decomposition: A Tool to Analyse Correlated Events in Turbulent Flows. Experiments in Fluids 35: 188–192.

    Article  Google Scholar 

  • Boukerche, A., Y. Tao, and P. Sun. 2020. Artificial Intelligence-Based Vehicular Traffic Flow Prediction Methods for Supporting Intelligent Transportation Systems. Computer Networks 182: 107484. ISSN 1389-1286. https://doi.org/10.1016/j.comnet.2020.107484. https://www.sciencedirect.com/science/article/pii/S1389128620311567.

    Article  Google Scholar 

  • Boulos, M.N.K., and J. Le Blond. 2016. On the Road to Personalised and Precision Geomedicine: Medical Geology and a Renewed Call for Interdisciplinarity. Internal Journal of Health Geographics 15: 5. https://doi.org/10.1186/s12942-016-0033-0.

    Article  Google Scholar 

  • Brockway, P.E., A. Owen, L.I. Brand-Correa, and L. Hardt. 2019. Estimation of Global Final-Stage Energy-Return-on-Investment for Fossil Fuels with Comparison to Renewable Energy Sources. Nature Energy 4 (7): 612–621.

    Article  Google Scholar 

  • Buckland, C., R. Bailey, and D. Thomas. 2019. Using Artificial Neural Networks to Predict Future Dryland Responses to Human and Climate Disturbances. Scientific Reports 9 (1): 1–13.

    Article  Google Scholar 

  • Buolamwini, J., and T. Gebru. 2018. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. In Proceedings of the Conference onFairness, Accountability, and Transparency – FAT* ’19, Volume 81 of Proceedings of Machine Learning Research, ed. S.A. Friedler and C. Wilson, 1–15. PMLR. http://proceedings.mlr.press/v81/buolamwini18a.html.

    Google Scholar 

  • Carayannis, E., T. Barth, and D. Campbell. 2012. The Quintuple Helix Innovation Model: Global Warming as a Challenge and Driver for Innovation. Journal of Innovation and Entrepreneurship 1: 1. https://doi.org/10.1186/2192-5372-1-2.

    Article  Google Scholar 

  • Carpentieri, M. 2013. Pollutant Dispersion in the Urban Environment. Reviews in Environmental Science and Biotechnology 12: 5–8.

    Article  Google Scholar 

  • Cass, N., E. Shove, and J. Urry. 2005. Social Exclusion, Mobility and Access. The Sociological Review 53 (3): 539–555.

    Article  Google Scholar 

  • Change, I.C., et al. 2014. Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Vol. 1454. Cambridge University Press.

    Google Scholar 

  • Chapman, H., A. Omar, J. Haynes, and S. Estes. 2018. Linking Satellite Data to the “One Health” Approach. AGU Fall Meeting Abstracts 2018: GH34B–09.

    Google Scholar 

  • Chen, H., O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke. 2018. The Rise of Deep Learning in Drug Discovery. Drug Discovery Today 23 (6): 1241–1250.

    Article  Google Scholar 

  • Collier, E., K. Duffy, S. Ganguly, G. Madanguit, S. Kalia, G. Shreekant, R. Nemani, A. Michaelis, S. Li, A. Ganguly, and S. Mukhopadhyay. 2018. Progressively Growing Generative Adversarial Networks for High Resolution Semantic Segmentation of Satellite Images. In 2018 IEEE International Conferenceon Data Mining Workshops (ICDMW), 763–769. https://doi.org/10.1109/ICDMW.2018.00115.

    Chapter  Google Scholar 

  • Cook, R., W. Karesh, and S. Osofsky. 2004. The Manhattan Principles on ‘One World One Health’. In One World, One Health: Building Interdisciplinary Bridges to Health in a Globalized World, 29. New York: Wildlife Conservation Society.

    Google Scholar 

  • Costamagna, P., A. De Giorgi, G. Moser, S.B. Serpico, and A. Trucco. 2019. Data-Driven Techniques for Fault Diagnosis in Power Generation Plants Based on Solid Oxide Fuel Cells. Energy Conversion and Management 180: 281–291.

    Article  Google Scholar 

  • Creswell, A., T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A.A. Bharath. 2018. Generative Adversarial Networks: An Overview. IEEE Signal Processing Magazine 35 (1): 53–65. https://doi.org/10.1109/MSP.2017.2765202.

    Article  Google Scholar 

  • D. Hern ́andez, J.-C. Cano, F. Silla, C.T. Calafate, and J.M. Cecilia. 2021. AI-Enabled Autonomous Drones for Fast Climate Change Crisis Assessment. IEEE Internet of Things Journal 9 (10): 7286–7297.

    Article  Google Scholar 

  • Dembrower, K., Y. Liu, H. Azizpour, M. Eklund, K. Smith, P. Lindholm, and F. Strand. 2020. Comparison of a Deep Learning Risk Score and Standard Mammographic Density Score for Breast Cancer Risk Prediction. Radiology 294 (2): 265–272.

    Article  Google Scholar 

  • Dennet, D.C. 1997. When HAL Kills, Who’s to Blame? Computer Ethics. In HAL’s Legacy: 2001’s Computer as Dream and Reality, ed. D.G. Stork, 351–365. MIT Press. ISBN 978-0-262-19378-8.

    Google Scholar 

  • Dewitte, S., J.P. Cornelis, R. M̈uller, and A. Munteanu. 2021. Artificial Intelligence Revolutionises Weather Forecast, Climate Monitoring and Decadal Prediction. Remote Sensing 13 (16): 3209.

    Google Scholar 

  • Di Santo, K.G., S.G. Di Santo, R.M. Monaro, and M.A. Saidel. 2018. Active Demand Side Management for Households in Smart Grids Using Optimization and Artificial Intelligence. Measurement 115: 152–161.

    Article  Google Scholar 

  • Dogan, E., R. Örlü, D. Gatti, R. Vinuesa, and P. Schlatter. 2019. Quantification of Amplitude Modulation in Wall-Bounded Turbulence. Fluid Dynamics Research 51: 011408.

    Article  Google Scholar 

  • Dostatni, E. 2018. Recycling-Oriented Eco-design Methodology Based on Decentralised Artificial Intelligence. Management and Production Engineering Review 9: 79–89.

    Google Scholar 

  • Downing, N.L., J. Rolnick, S.F. Poole, E. Hall, A.J. Wessels, P. Heidenreich, and L. Shieh. 2019. Electronic Health Record-Based Clinical Decision Support Alert for Severe Sepsis: A Randomised Evaluation. BMJ Quality and Safety 28 (9): 762–768.

    Article  Google Scholar 

  • Dujon, A.M., and G. Schofield. 2019. Importance of Machine Learning for Enhancing Ecological Studies Using Information-Rich Imagery. Endangered Species Research 39: 91–104.

    Article  Google Scholar 

  • E. Commission. 2018. Communication on Enabling the Digital Transformation of Health and Care in the Digital Single Market; Empowering Citizens and Building a Healthier Society. https://digital-strategy.ec.europa.eu/en/library/communication-enabling-digital-transformation-health-and-care-digital-single-market-empowering.

  • Engstr̈om, E, F. Strand, and P. Strimling. 2021. Human-AI Interactions in a Trial of AI Breast Cancer Diagnostics in a Real-World Clinical Setting.

    Google Scholar 

  • EC Air Quality Framework Directive. 1996. European Commission, Ambient Air Quality Assessment and Management. Council Directive 96/62/EC.

    Google Scholar 

  • Eivazi, H., L. Guastoni, P. Schlatter, H. Azizpour, and R. Vinuesa. 2021. Recurrent Neural Networks and Koopman-Based Frameworks for Temporal Predictions in a Low-Order Model of Turbulence. International Journal of Heat and Fluid Flow 90: 108816.

    Article  Google Scholar 

  • Encinar, M.P., and J. Jiménez. 2019. Logarithmic-Layer Turbulence: A View from the Wall. Physical Review Fluids 4: 114603.

    Article  Google Scholar 

  • Esteva, A., B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, H.M. Blau, and S. Thrun. 2017. Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature 542 (7639): 115–118.

    Article  Google Scholar 

  • European Environment Agency. 2021. Europe’s Air Quality Status 2021, Briefing No. 08/2021. European Environment Agency.

    Google Scholar 

  • Fenech, M.E., and O. Buston. 2020. AI in Cardiac Imaging: A UK-Based Perspective on Addressing the Ethical, Social, and Political Challenges. Frontiers in Cardiovascular Medicine 7: 54. ISSN 2297-055X. https://doi.org/10.3389/fcvm.2020.00054. https://www.frontiersin.org/article/10.3389/fcvm.2020.00054.

    Article  Google Scholar 

  • Feng, P., B. Wang, D. Li Liu, C. Waters, and Q. Yu. 2019. Incorporating Machine Learning with Biophysical Model Can Improve the Evaluation of Climate Extremes Impacts on Wheat Yield in South-Eastern Australia. Agricultural and Forest Meteorology 275: 100–113.

    Article  Google Scholar 

  • Field, C.B., V. Barros, T.F. Stocker, and Q. Dahe. 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

    Book  Google Scholar 

  • Fuso Nerini, F., T. Fawcett, Y. Parag, and P. Ekins. 2021. Personal Carbon Allowances Revisited. Nature Sustainability 4: 1–7.

    Article  Google Scholar 

  • Garcia-Vidal, C., G. Sanjuan, P. Puerta-Alcalde, E. Moreno-Garc ́ıa, and A. Soriano. 2019. Artificial Intelligence to Support Clinical Decision-Making Processes. eBioMedicine 46: 27–29.

    Article  Google Scholar 

  • George, G., R.K. Merrill, and S.J. Schillebeeckx. 2021. Digital Sustainability and Entrepreneurship: How Digital Innovations Are Helping Tackle Climate Change and Sustainable Development. Entrepreneurship Theory and Practice 45 (5): 999–1027.

    Article  Google Scholar 

  • Gerke, S., T. Minssen, and G. Cohen. 2020. Chapter 12 – Ethical and Legal Challenges of Artificial Intelligence-Driven Healthcare. In Artificial Intelligence in Healthcare, ed. A. Bohr and K. Memarzadeh, 295–336. Academic. ISBN 978-0-12-818438-7. https://doi.org/10.1016/B978-0-12-818438-7.00012-5. https://www.sciencedirect.com/science/article/pii/B9780128184387000125.

    Chapter  Google Scholar 

  • Ghiggi, G., V. Humphrey, S.I. Seneviratne, and L. Gudmundsson. 2019. Grun: An Observation-Based Global Gridded Runoff Dataset From 1902 to 2014. Earth System Science Data 11 (4): 1655–1674.

    Article  Google Scholar 

  • Giacobbe, D.R., S. Mora, M. Giacomini, and M. Bassetti. 2020. Machine Learning and Multidrug-Resistant Gram-Negative Bacteria: An Interesting Combination for Current and Future Research. Antibiotics 9 (2): 54.

    Article  Google Scholar 

  • Gielen, D., F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, and R. Gorini. 2019. The Role of Renewable Energy in the Global Energy Transformation. Energy Strategy Reviews 24: 38–50.

    Article  Google Scholar 

  • Gómez-Bombarelli, R., J.N. Wei, D. Duvenaud, J. M. Herńandez-Lobato, B. Śanchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T.D. Hirzel, R.P. Adams, and A. Aspuru-Guzik. 2018. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Central Science 4 (2): 268–276.

    Google Scholar 

  • Goyal, M.K., B. Bharti, J. Quilty, J. Adamowski, and A. Pandey. 2014. Modeling of Daily Pan Evaporation in Sub Tropical Climates Using ANN, LS-SVR, Fuzzy Logic, and Anfis. Expert Systems with Applications 41 (11): 5267–5276.

    Article  Google Scholar 

  • Guastoni, L., A. Güemes, A. Ianiro, S. Discetti, P. Schlatter, H. Azizpour, and R. Vinuesa. 2021. Convolutional-Network Models to Predict Wall-Bounded Turbulence from Wall Quantities. Journal of Fluid Mechanics 928: A27.

    Google Scholar 

  • Güemes, A., S. Discetti, A. Ianiro, B. Sirmacek, H. Azizpour, and R. Vinuesa. 2021. From Coarse Wall Measurements to Turbulent Velocity Fields Through Deep Learning. Physics of Fluids 33: 075121.

    Article  Google Scholar 

  • Guo, H., X. Pu, J. Chen, Y. Meng, M.-H. Yeh, G. Liu, Q. Tang, B. Chen, D. Liu, S. Qi, et al. 2018. A Highly Sensitive, Self-Powered Triboelectric Auditory Sensor for Social Robotics and Hearing Aids. Science robotics 3 (20): eaat2516.

    Article  Google Scholar 

  • Gupta, S., E. Pebesma, A. Degbelo, and A.C. Costa. 2018a. Optimising Citizen-Driven Air Quality Monitoring Networks for Cities. ISPRS International Journal of Geo-Information 7 (12): 468.

    Article  Google Scholar 

  • Gupta, S., E. Pebesma, J. Mateu, and A. Degbelo. 2018b. Air Quality Monitoring Network Design Optimisation for Robust Land Use Regression Models. Sustainability 10 (5): 1442.

    Article  Google Scholar 

  • Gupta, S., M. Motlagh, and J. Rhyner. 2020. The Digitalization Sustainability Matrix: A Participatory Research Tool for Investigating Digitainability. Sustainability 12 (21): 9283.

    Article  Google Scholar 

  • Gupta, S., S.D. Langhans, S. Domisch, F. Fuso-Nerini, A. Fellander, M. Battaglini, M. Tegmark, and R. Vinuesa. 2021. Assessing Whether Artificial Intelligence Is an Enabler or an Inhibitor of Sustainability at Indicator Level. Transportation Engineering 4: 100064.

    Article  Google Scholar 

  • Haupt, S.E., T.C. McCandless, S. Dettling, S. Alessandrini, J.A. Lee, S. Linden, W. Petzke, T. Brummet, N. Nguyen, B. Kosovi ́c, et al. 2020. Combining Artificial Intelligence with Physics-Based Methods for Probabilistic Renewable Energy Forecasting. Energies 13 (8): 1979.

    Article  Google Scholar 

  • Heaviside, C., S. Vardoulakis, and X.-M. Cai. 2016. Attribution of Mortality to the Urban Heat Island During Heatwaves in the West Midlands, UK. Environmental Health 15: S27.

    Article  Google Scholar 

  • Henderson, P., J. Hu, J. Romoff, E. Brunskill, D. Jurafsky, and J. Pineau. 2020. Towards the Systematic Reporting of the Energy and Carbon Footprints of Machine Learning. Journal of Machine Learning Research 21 (248): 1–43.

    Google Scholar 

  • Herweijer, C., and D. Waughray. 2018. Fourth Industrial Revolution for the Earth Harnessing Artificial Intelligence for the Earth. A Report of Pricewaterhouse Coopers (PwC).

    Google Scholar 

  • Hochreiter, S., and J. Schmidhuber. 1997. Long Short-Term Memory. Neural Computation 9 (8): 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735.

    Article  Google Scholar 

  • Hosseini, Z., R.J. Martinuzzi, and B.R. Noack. 2015. Sensor-Based Estimation of the Velocity in the Wake of a Low-Aspect-Ratio Pyramid. Experiments in Fluids 56: 13.

    Article  Google Scholar 

  • ———. 2016. Modal Energy Flow Analysis of a Highly Modulated Wake Behind a Wall-Mounted Pyramid. Journal of Fluid Mechanics 798: 717–750.

    Article  Google Scholar 

  • Howe, J., K. Pula, and A.A. Reite. 2019. Conditional Generative Adversarial Networks for Data Augmentation and Adaptation in Remotely Sensed Imagery. In Applications of Machine Learning, ed. M.E. Zelinski, T.M. Taha, J. Howe, A.A.S. Awwal, and K.M. Iftekharuddin, vol. 11139, 119–131. International Society for Optics and Photonics, SPIE. https://doi.org/10.1117/12.2529586.

    Chapter  Google Scholar 

  • Hu, Y., S. Gao, S.D. Newsam, and D.D. Lunga. 2018. Geoai 2018 Workshop Report the 2nd ACM Sigspatial International Workshop on Geoai: AI for Geographic Knowledge Discovery Seattle, WA, USA-November 6, 2018. ACM SIGSPATIAL Special 10 (3): 16.

    Article  Google Scholar 

  • Hu, Z., Y. Jin, Q. Hu, S. Sen, T. Zhou, and M.T. Osman. 2019. Prediction of Fuel Consumption for Enroute Ship Based on Machine Learning. IEEE Access 7: 119497–119505.

    Article  Google Scholar 

  • Huntingford, C., E.S. Jeffers, M.B. Bonsall, H.M. Christensen, T. Lees, and H. Yang. 2019. Machine Learning and Artificial Intelligence to Aid Climate Change Research and Preparedness. Environmental Research Letters 14 (12): 124007.

    Article  Google Scholar 

  • I. E. Agency. 2017. Digitalization & Energy. IEA.

    Book  Google Scholar 

  • I. M. Ltd. 2020. The Complexities of Physician Supply and Demand: Projections from 2018 to 2033. Washington, DC: AAMC.

    Google Scholar 

  • Illingworth, S.J., J.P. Monty, and I. Marusic. 2018. Estimating Large-Scale Structures in Wall Turbulence Using Linear Models. Journal of Fluid Mechanics 842: 146–162.

    Article  Google Scholar 

  • Istepanian, R.S., and T. Al-Anzi. 2018. m-health 2.0: New Perspectives on Mobile Health, Machine Learning and Big Data Analytics. Methods 151: 34–40.

    Article  Google Scholar 

  • Jabbar, A., X. Li, and B. Omar. 2021. A Survey on Generative Adversarial Networks: Variants, Applications, and Training. ACM Computing Surveys 54 (8). https://doi.org/10.1145/3463475.

  • Jasim, O.Z., N.H. Hamed, and M.A. Abid. 2020. Urban Air Quality Assessment Using Integrated Artificial Intelligence Algorithms and Geographic Information System Modeling in a Highly Congested Area, Iraq. Journal of Southwest Jiaotong University 55 (1). https://doi.org/10.35741/issn.0258-2724.55.1.16.

  • Jean, N., M. Burke, M. Xie, W.M. Davis, D.B. Lobell, and S. Ermon. 2016. Combining Satellite Imagery and Machine Learning to Predict Poverty. Science 353: 790–794.

    Article  Google Scholar 

  • Jin, C., H. Yu, J. Ke, P. Ding, Y. Yi, X. Jiang, J. Tang, D.T. Chang, X. Wu, F. Gao, et al. 2021. Predicting Treatment Response from Longitudinal Images Using Multi-task Deep Learning. Nature Communications 12 (1): 1–11.

    Article  Google Scholar 

  • Johnston, F., A. Wheeler, G. Williamson, S. Campbell, P. Jones, I. Koolhof, C. Lucani, N. Cooling, and D. Bowman. 2018. Using Smartphone Technology to Reduce Health Impacts from Atmospheric Environmental Hazards. Environmental Research Letters 13 (4): 044019.

    Article  Google Scholar 

  • Jumper, J., R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A.ˇZ ́ıdek, A. Potapenko, et al. 2021. Highly Accurate Protein Structure Prediction with Alphafold. Nature 596 (7873): 583–589.

    Article  Google Scholar 

  • Karnama, A., E.B. Haghighi, and R. Vinuesa. 2019. Organic Data Centers: A Sustainable Solution for Computing Facilities. Results in Engineering 4: 100063.

    Article  Google Scholar 

  • Khalil, U., B. Aslam, U. Azam, and H.M.D. Khalid. 2021. Time Series Analysis of Land Surface Temperature and Drivers of Urban Heat Island Effect Based on Remotely Sensed Data to Develop a Prediction Model. Applied Artificial Intelligence 0 (0): 1–26. https://doi.org/10.1080/08839514.2021.1993633.

    Article  Google Scholar 

  • Kharat, R., and T. Devi. 2021. Artificial Intelligence in Environmental Management. In Artificial Intelligence Theory, Models, and Applications, 37–46. Auerbach Publications.

    Chapter  Google Scholar 

  • Khosrojerdi, F., O. Akhigbe, S. Gagnon, A. Ramirez, and G. Richards. 2021. Integrating Artificial Intelligence and Analytics in Smart Grids: A Systematic Literature Review. International Journal of Energy Sector Management 16 (2): 318–338.

    Google Scholar 

  • Kim, D.-W., and C.-J. Cha. 2021. Antibiotic Resistome from the One-Health Perspective: Understanding and Controlling Antimicrobial Resistance Transmission. Experimental & Molecular Medicine 53 (3): 301–309.

    Article  Google Scholar 

  • Kim, T.-Y., and S.-B. Cho. 2019. Predicting Residential Energy Consumption Using CNN-LSTM Neural Networks. Energy 182: 72–81.

    Article  Google Scholar 

  • Kinross, J.M., S.E. Mason, G. Mylonas, and A. Darzi. 2020. Next-Generation Robotics in Gastrointestinal Surgery. Nature Reviews Gastroenterology & Hepatology 17 (7): 430–440.

    Article  Google Scholar 

  • Kruk, M.E., A.D. Gage, C. Arsenault, K. Jordan, H.H. Leslie, S. Roder-DeWan, O. Adeyi, P. Barker, B. Daelmans, S.V. Doubova, et al. 2018. High-Quality Health Systems in the Sustainable Development Goals Era: Time for a Revolution. The Lancet Global Health 6 (11): e1196–e1252.

    Article  Google Scholar 

  • Kulkarni, R., and E. Di Minin. 2021. Automated Retrieval of Information on Threatened Species from Online Sources Using Machine Learning. Methods in Ecology and Evolution 12: 1226–1239.

    Article  Google Scholar 

  • Kwon, J.-M., Y. Lee, Y. Lee, S. Lee, H. Park, and J. Park. 2018. Validation of Deep-Learning-Based Triage and Acuity Score Using a Large National Dataset. PLoS One 13 (10): e0205836.

    Article  Google Scholar 

  • Lakshmi, V., and J. Corbett. 2020. How Artificial Intelligence Improves Agricultural Productivity and Sustainability: A Global Thematic Analysis. https://doi.org/10.24251/HICSS.2020.639.

    Book  Google Scholar 

  • Lannelongue, L., J. Grealey, and M. Inouye. 2021. Green Algorithms: Quantifying the Carbon Footprint of Computation. Advanced Science 8: 2100707.

    Article  Google Scholar 

  • LeCun, Y., L. Bottou, and P. Haffner. 1998. Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE 86: 2278–2324.

    Article  Google Scholar 

  • LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep Learning. Nature 521 (7553): 436–444.

    Article  Google Scholar 

  • Lee, M.-H. 2019. Insights from Machine Learning Techniques for Predicting the Efficiency of Fullerene Derivatives-Based Ternary Organic Solar Cells at Ternary Blend Design. Advanced Energy Materials 9 (26): 1900891.

    Article  Google Scholar 

  • Lelieveld, J., K. Klingmuller, A. Pozzer, U. P̈oschl, M. Fnais, A. Daiber, and T. M̈unzel. 2019. Cardiovascular Disease Burden from Ambient Air Pollution in Europe Reassessed Using Novel Hazard Ratio Functions. European Heart Journal 40: 1590–1596.

    Google Scholar 

  • Li, H., H. Yu, N. Cao, H. Tian, and S. Cheng. 2021a. Applications of Artificial Intelligence in Oil and Gas Development. Archives of Computational Methods in Engineering 28 (3): 937–949.

    Article  Google Scholar 

  • Li, K., J. Tian, W. Xue, and G. Tan. 2021b. Short-Term Electricity Consumption Prediction for Buildings Using Data-Driven Swarm Intelligence Based Ensemble Model. Energy and Buildings 231: 110558.

    Article  Google Scholar 

  • Liang, W., J. Yao, A. Chen, Q. Lv, M. Zanin, J. Liu, S. Wong, Y. Li, J. Lu, H. Liang, et al. 2020. Early Triage of Critically Ill Covid-19 Patients Using Deep Learning. Nature Communications 11 (1): 1–7.

    Article  Google Scholar 

  • Lou, R., Z. Lv, S. Dang, T. Su, and X. Li. 2021. Application of Machine Learning in Ocean Data. Multimedia Systems: 1–10. https://doi.org/10.1007/s00530-020-00733-x.

  • Lowe, M.D. 1990. Alternatives to the Automobile: Transport for Livable Cities. Ekistics 344 (345): 269–282.

    Google Scholar 

  • Lumley, J.L. 1967. The Structure of Inhomogeneous Turbulence. In Atmospheric Turbulence and Wave Propagation, ed. A.M. Yaglom and V.I. Tatarski, 166–178. Moscow: Nauka.

    Google Scholar 

  • Luxton, D.D. 2014. Recommendations for the Ethical Use and Design of Artificial Intelligent Care Providers. Artificial Intelligence in Medicine 62 (1): 1–10. ISSN 0933-3657. https://doi.org/10.1016/j.artmed.2014.06.004. https://www.sciencedirect.com/science/article/pii/S0933365714000682.

    Article  Google Scholar 

  • Manoli, G., S. Fatichi, M. Schl̈apfer, K. Yu, T.W. Crowther, N. Meili, P. Burlando, G.G. Katul, and E. Bou-Zeid. 2019. Magnitude of Urban Heat Islands Largely Explained by Climate and Population. Nature 573: 55–60.

    Google Scholar 

  • Masanet, E., A. Shehabi, N. Lei, S. Smith, and J. Koomey. 2020. Recalibrating Global Data Center Energy-Use Estimates. Science 367 (6481): 984–986.

    Article  Google Scholar 

  • McKeon, B.J., and A.S. Sharma. 2010. A Critical-Layer Framework for Turbulent Pipe Flow. Journal of Fluid Mechanics 658: 336–382.

    Article  Google Scholar 

  • Menad, N.A., A. Hemmati-Sarapardeh, A. Varamesh, and S. Shamshirband. 2019. Predicting Solubility of CO2 in Brine by Advanced Machine Learning Systems: Application to Carbon Capture and Sequestration. Journal of CO2 Utilization 33: 83–95.

    Article  Google Scholar 

  • Milojevic-Dupont, N., and F. Creutzig. 2021. Machine Learning for Geographically Differentiated Climate Change Mitigation in Urban Areas. Sustainable Cities and Society 64: 102526.

    Article  Google Scholar 

  • Miotto, R., L. Li, B.A. Kidd, and J.T. Dudley. 2016. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Scientific Reports 6 (1): 1–10.

    Article  Google Scholar 

  • Mokhasi, P., D. Rempfer, and S. Kandala. 2009. Predictive Flow-Field Estimation. Physica D 238: 290–308.

    Article  Google Scholar 

  • Motia, S., and S. Reddy. 2021. Exploration of Machine Learning Methods for Prediction and Assessment of Soil Properties for Agricultural Soil Management: A Quantitative Evaluation. Journal of Physics: Conference Series 1950 (1): 012037. https://doi.org/10.1088/1742-6596/1950/1/012037.

    Article  Google Scholar 

  • Murphy, K., E. Di Ruggiero, R. Upshur, D.J. Willison, N. Malhotra, J.C. Cai, N. Malhotra, V. Lui, and J. Gibson. 2021. Artificial Intelligence for Good Health: A Scoping Review of the Ethics Literature. BMC Medical Ethics 22 (1): 14. ISSN 1472-6939. https://doi.org/10.1186/s12910-021-00577-8.

    Article  Google Scholar 

  • Nerini, F.F., B. Sovacool, N. Hughes, L. Cozzi, E. Cosgrave, M. Howells, M. Tavoni, J. Tomei, H. Zerriffi, and B. Milligan. 2019. Connecting Climate Action with Other Sustainable Development Goals. Nature Sustainability 2 (8): 674–680.

    Article  Google Scholar 

  • Nijhawan, R., M. Rishi, A. Tiwari, and R. Dua. 2019. A Novel Deep Learning Framework Approach for Natural Calamities Detection. In Information and Communication Technology for Competitive Strategies, 561–569. Springer.

    Chapter  Google Scholar 

  • O. Publishing. 2018. Health at a Glance: Europe 2018: State of Health in the EU Cycle. Organisation for Economic Co-operation and Development OECD.

    Google Scholar 

  • ———. 2020. Trustworthy AI in Health. Organisation for Economic Co-operation and Development OECD.

    Google Scholar 

  • O’neil, C. 2016. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Broadway Books. ISBN 978-0-14-198541-1.

    Google Scholar 

  • Obermeyer, Z., B. Powers, C. Vogeli, and S. Mullainathan. 2019. Dissecting Racial Bias in an Algorithm Used to Manage the Health of Populations. Science 366 (6464): 447–453. https://doi.org/10.1126/science.aax2342. https://www-science-org.focus.lib.kth.se/lookup/doi/10.1126/science.aax2342.

    Article  Google Scholar 

  • Palomares, I., E. Martınez-Camara, R. Montes, P. Garcıa-Moral, M. Chiachio, J. Chiachio, S. Alonso, F.J. Melero, D. Molina, B. Fernandez, C. Moral, R. Marchena, J.P. de Vargas, and F. Herrera. 2021. A Panoramic View and Swot Analysis of Artificial Intelligence for Achieving the Sustainable Development Goals by 2030: Progress and Prospects. Applied Intelligence (Dordrecht, Netherlands) 51 (9): 6497–6527. ISSN 1573-7497. https://doi.org/10.1007/s10489-021-02264-y.

    Google Scholar 

  • Panayides, A.S., A. Amini, N.D. Filipovic, A. Sharma, S.A. Tsaftaris, A. Young, D. Foran, N. Do, S. Golemati, T. Kurc, et al. 2020. AI in Medical Imaging Informatics: Current Challenges and Future Directions. IEEE Journal of Biomedical and Health Informatics 24 (7): 1837–1857.

    Article  Google Scholar 

  • Petersen, S.E., M. Abdulkareem, and T. Leiner. 2019. Artificial Intelligence Will Transform Cardiac Imaging – Opportunities and Challenges. Frontiers in Cardiovascular Medicine 6: 133. ISSN 2297-055X. https://doi.org/10.3389/fcvm.2019.00133. https://www.frontiersin.org/article/10.3389/fcvm.2019.00133.

    Article  Google Scholar 

  • Pibre, L., M. Chaumon, G. Subsol, D. Lenco, and M. Derras. 2017. How to Deal with Multi-source Data for Tree Detection Based on Deep Learning. In 2017 IEEE Global Conference on Signal and InformationProcessing (GlobalSIP), 1150–1154. https://doi.org/10.1109/GlobalSIP.2017.8309141.

    Chapter  Google Scholar 

  • Pooley, C. 2016. Mobility, Transport and Social Inclusion: Lessons from History. Social Inclusion 4 (3): 100–109.

    Article  Google Scholar 

  • Powles, J., and H. Hodson. 2017. Google DeepMind and Healthcare in an Age of Algorithms. Health and Technology 7 (4): 351–367. ISSN 2190-7196. https://doi.org/10.1007/s12553-017-0179-1.

    Article  Google Scholar 

  • Rajkomar, A., E. Oren, K. Chen, A.M. Dai, N. Hajaj, M. Hardt, P.J. Liu, X. Liu, J. Marcus, M. Sun, et al. 2018. Scalable and Accurate Deep Learning with Electronic Health Records. NPJ Digital Medicine 1 (1): 1–10.

    Article  Google Scholar 

  • Raza, M.Q., and A. Khosravi. 2015. A Review on Artificial Intelligence Based Load Demand Forecasting Techniques for Smart Grid and Buildings. Renewable and Sustainable Energy Reviews 50: 1352–1372.

    Article  Google Scholar 

  • Reichstein, M., G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, and N. Carvalhais. 2019. The National Energy Research Supercomputing Center in Lawrence Berkeley National Laboratory, Berkeley, CA, USA: Deep Learning and Process Understanding for Data-Driven Earth System Science. Nature 566: 195–204.

    Article  Google Scholar 

  • Romm, J. 2018. Climate Change: What Everyone Needs to Know®. Oxford University Press.

    Book  Google Scholar 

  • Rutqvist, D., D. Kleyko, and F. Blomstedt. 2019. An Automated Machine Learning Approach for Smart Waste Management Systems. IEEE Transactions on Industrial Informatics 16 (1): 384–392.

    Article  Google Scholar 

  • Saba, L., M. Biswas, H.S. Suri, K. Viskovic, J.R. Laird, E. Cuadrado-Godia, A. Nicolaides, N. Khanna, V. Viswanathan, and J.S. Suri. 2019. Ultrasound-Based Carotid Stenosis Measurement and Risk Stratification in Diabetic Cohort: A Deep Learning Paradigm. Cardiovascular Diagnosis and Therapy 9 (5): 439.

    Article  Google Scholar 

  • Sasaki, K., A.V.G. Vinuesa, R. Cavalieri, P. Schlatter, and D.S. Henningson. 2019. Transfer Functions for Flow Predictions in Wall-Bounded Turbulence. Journal of Fluid Mechanics 864: 708–745.

    Article  Google Scholar 

  • Schneider, T., S. Lan, A. Stuart, and J. Teixeira. 2017. Earth System Modeling 2.0: A Blueprint for Models That Learn from Observations and Targeted High-Resolution Simulations. Geophysical Research Letters 44 (24): 12–396.

    Article  Google Scholar 

  • Selleneit, V., M. Stockl, and U. Holzhammer. 2020. System Efficiency–Methodology for Rating of Industrial Utilities in Electricity Grids with a High Share of Variable Renewable Energies – A First Approach. Renewable and Sustainable Energy Reviews 130: 109969.

    Article  Google Scholar 

  • Shaban-Nejad, A., M. Michalowski, and D.L. Buckeridge. 2018. Health Intelligence: How Artificial Intelligence Transforms Population and Personalized Health. NPJ Digital Medicine 1: 53.

    Article  Google Scholar 

  • Shahroz, M., F. Ahmad, M.S. Younis, N. Ahmad, M.N.K. Boulos, R. Vinuesa, and J. Qadir. 2021. Covid-19 Digital Contact Tracing Applications and Techniques: A Review Post Initial Deployments. Transportation Engineering 5: 100072.

    Article  Google Scholar 

  • Sharma, A., A. Jain, P. Gupta, and V. Chowdary. 2020. Machine Learning Applications for Precision Agriculture: A Comprehensive Review. IEEE Access 9: 4843–4873.

    Article  Google Scholar 

  • Shinners, L., C. Aggar, S. Grace, and S. Smith. 2021. Exploring Healthcare Professionals’ Perceptions of Artificial Intelligence: Validating a Questionnaire Using the e-Delphi Method. Digital Health 7: 20552076211003433. ISSN 2055-2076. https://doi.org/10.1177/20552076211003433.

    Article  Google Scholar 

  • Shorten, G. 2019. Artificial Intelligence and Training Physicians to Perform Technical Procedures. JAMA Network Open 2 (8): e198375–e198375.

    Article  Google Scholar 

  • Social Exclusion Unit. 2003. Making the Connections: Final Report on Transport and Social Exclusion.

    Google Scholar 

  • Solano, J., L. Olivieri, and E. Caamaño-Martín. 2017. Assessing the Potential of PV Hybrid Systems to Cover HVAC Loads in a Grid-Connected Residential Building Through Intelligent Control. Applied Energy 206: 249–266.

    Article  Google Scholar 

  • Srinivasan, P.A., L. Guastoni, H. Azizpour, P. Schlatter, and R. Vinuesa. 2019. Predictions of Turbulent Shear Flows Using Deep Neural Networks. Physical Review Fluids 4: 054603.

    Article  Google Scholar 

  • Stokes, J.M., K. Yang, K. Swanson, W. Jin, A. Cubillos-Ruiz, N.M. Donghia, C.R. MacNair, S. French, L.A. Carfrae, Z. Bloom-Ackermann, et al. 2020. A Deep Learning Approach to Antibiotic Discovery. Cell 180 (4): 688–702.

    Article  Google Scholar 

  • Stuck, M., A. Vidal, P. Torres, H.M. Nagib, C. Wark, and R. Vinuesa. 2021. Spectral-Element Simulation of the Turbulent Flow in an Urban Environment. Applied Sciences 11: 6472.

    Article  Google Scholar 

  • Suo, Q., H. Xue, J. Gao, and A. Zhang. 2016. Risk Factor Analysis Based on Deep Learning Models. In Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and HealthInformatics, 394–403.

    Google Scholar 

  • Suzuki, T., and Y. Hasegawa. 2017. Estimation of Turbulent Channel Flow at Reθ= 100 Based on the Wall Measurement Using a Simple Sequential Approach. Journal of Fluid Mechanics 830: 760–796.

    Article  Google Scholar 

  • Theyazn, A., M. Al-Yaari, H. Alkahtani, and M. Maashi. 2020. Water Quality Prediction Using Artificial Intelligence Algorithms. Applied Bionics and Biomechanics 1–12 (12): 2020. https://doi.org/10.1155/2020/6659314.

    Article  Google Scholar 

  • Traore, B.B., B. Kamsu-Foguem, and F. Tangara. 2017. Data Mining Techniques on Satellite Images for Discovery of Risk Areas. Expert Systems with Applications 72: 443–456.

    Article  Google Scholar 

  • Tripathi, S., V. Srinivas, and R.S. Nanjundiah. 2006. Downscaling of Precipitation for Climate Change Scenarios: A Support Vector Machine Approach. Journal of Hydrology 330 (3–4): 621–640.

    Article  Google Scholar 

  • Ullah, Z., F. Al-Turjman, L. Mostarda, and R. Gagliardi. 2020. Applications of Artificial Intelligence and Machine Learning in Smart Cities. Computer Communications 154: 313–323.

    Article  Google Scholar 

  • UN General Assembly (UNGA). 2015. Transforming Our World: The 2030 Agenda for Sustainable Development. Resolut. A/RES/70/1 25: 1–35.

    Google Scholar 

  • Venayagamoorthy, G.K. 2009. Potentials and Promises of Computational Intelligence for Smart Grids. In 2009 IEEE Power & Energy Society General Meeting, 1–6. IEEE.

    Google Scholar 

  • Verghese, A., N.H. Shah, and R.A. Harrington. 2018. What This Computer Needs Is a Physician: Humanism and Artificial Intelligence. JAMA 319 (1): 19–20. ISSN 0098-7484. https://doi.org/10.1001/jama.2017.19198.

    Article  Google Scholar 

  • Vinuesa, R., and B. Sirmacek. 2021. Interpretable Deep-Learning Models to Help Achieve the Sustainable Development Goals. Nature Machine Intelligence 3: 926, 2021. https://doi.org/10.1038/s42256-021-00414-y.

  • Vinuesa, R., P. Schlatter, J. Malm, C. Mavriplis, and D.S. Henningson. 2015. Direct Numerical Simulation of the Flow Around a Wall-Mounted Square Cylinder Under Various Inflow Conditions. Journal of Turbulence 16: 555–587.

    Article  Google Scholar 

  • Vinuesa, R., H. Azizpour, I. Leite, M. Balaam, V. Dignum, S. Domisch, A. Felländer, S.D. Langhans, M. Tegmark, and F. Fuso Nerini. 2020a. The Role of Artificial Intelligence in Achieving the Sustainable Development Goals. Nature Communications 11 (1): 233. ISSN 2041-1723. https://doi.org/10.1038/s41467-019-14108-y. https://www.nature.com/articles/s41467-019-14108-y.

    Article  Google Scholar 

  • Vinuesa, R., A. Theodorou, M. Battaglini, and V. Dignum. 2020b. A Socio-technical Framework for Digital Contact Tracing. Results in Engineering 8: 100163. ISSN 2590-1230. https://doi.org/10.1016/j.rineng.2020.100163. https://www.sciencedirect.com/science/article/pii/S2590123020300694.

    Article  Google Scholar 

  • Vuchic, V.R. 2017. Transportation for Livable Cities. Routledge.

    Book  Google Scholar 

  • Vulova, S., F. Meier, A.D. Rocha, J. Quanz, H. Nouri, and B. Kleinschmit. 2021. Modeling Urban Evapotranspiration Using Remote Sensing, Flux Footprints, and Artificial Intelligence. Science of the Total Environment 786: 147293. ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2021.147293. https://www.sciencedirect.com/science/article/pii/S0048969721023640.

    Article  Google Scholar 

  • W. H. Organization. 2006. The World Health Report 2006: Working Together for Health. World Health Organization.

    Book  Google Scholar 

  • W. H. Organization, et al. 2012. High-Level Technical Meeting to Address Health Risks at the Human-Animal Ecosystems Interfaces: Mexico City, Mexico, 15–17 November 2011.

    Google Scholar 

  • ———. 2016a. Global Strategy on Human Resources for Health: Workforce 2030. WHO.

    Google Scholar 

  • ———. 2016b. Working for Health and Growth: Investing in the Health Workforce. WHO.

    Google Scholar 

  • W.H.O. 2019. WHO Guideline: Recommendationson Digital Interventions for Health System Strengthening. World Health Organization (WHO). ISBN 978-92-4-155050-5. http://www.who.int/reproductivehealth/publications/digital-interventions-health-system-strengthening/en/.

    Google Scholar 

  • Wakunuma, K., T. Jiya, and S. Aliyu. 2020. Socio-ethical Implications of Using AI in Accelerating SDG3 in Least Developed Countries. Journal of Responsible Technology 4: 100006. ISSN 2666-6596. https://doi.org/10.1016/j.jrt.2020.100006. https://www.sciencedirect.com/science/article/pii/S2666659620300068.

    Article  Google Scholar 

  • Wang, J.-J., Y.-Y. Jing, C.-F. Zhang, and J.-H. Zhao. 2009. Review on Multi-criteria Decision Analysis Aid in Sustainable Energy Decision-Making. Renewable and Sustainable Energy Reviews 13 (9): 2263–2278.

    Article  Google Scholar 

  • Wang, S., Z. Liu, Y. Rong, B. Zhou, Y. Bai, W. Wei, M. Wang, Y. Guo, and J. Tian. 2019. Deep Learning Provides a New Computed Tomography-Based Prognostic Biomarker for Recurrence Prediction in High-Grade Serous Ovarian Cancer. Radiotherapy and Oncology 132: 171–177.

    Article  Google Scholar 

  • Wang, B., B. Xie, J. Xuan, and K. Jiao. 2020a. AI-Based Optimization of Pem Fuel Cell Catalyst Layers for Maximum Power Density Via Data-Driven Surrogate Modeling. Energy Conversion and Management 205: 112460.

    Article  Google Scholar 

  • Wang, Z., K. Jiang, P. Yi, Z. Han, and Z. He. 2020b. Ultra-dense Gan for Satellite Imagery Super-Resolution. Neurocomputing 398: 328–337. ISSN 0925-2312. https://doi.org/10.1016/j.neucom.2019.03.106.

    Article  Google Scholar 

  • West, S.M., M. Whittaker, and K. Crawford. 2019. Discriminating Systems. AI Now.

    Google Scholar 

  • Wichmann, A., A. Agoub, and M. Kada. 2018. Roofn3d: Deep Learning Training Data for 3d Building Reconstruction. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2: 1191–1198. https://doi.org/10.5194/isprs-archives-XLII-2-1191-2018.

    Article  Google Scholar 

  • Wilson, M., J. Paschen, and L. Pitt. 2021. The Circular Economy Meets Artificial Intelligence (AI): Understanding the Opportunities of AI for Reverse Logistics. Management of Environmental Quality: An International Journal 33 (1): 9–25.

    Article  Google Scholar 

  • Wu, Y., A. Sharifi, P. Yang, H. Borjigin, D. Murakami, and Y. Yamagata. 2018. Mapping Building Carbon Emissions Within Local Climate Zones in Shanghai. Energy Procedia 152: 815–822.

    Article  Google Scholar 

  • Wu, C., Y. Chen, C. Peng, Z. Li, and X. Hong. 2019. Modeling and Estimating Aboveground Biomass of Dacrydium pierrei in China Using Machine Learning with Climate Change. Journal of Environmental Management 234: 167–179.

    Article  Google Scholar 

  • Xu, Y., A. Hosny, R. Zeleznik, C. Parmar, T. Coroller, I. Franco, R.H. Mak, and H.J. Aerts. 2019. Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging. Clinical Cancer Research 25 (11): 3266–3275.

    Article  Google Scholar 

  • Yan, B., F. Hao, and X. Meng. 2021. When Artificial Intelligence Meets Building Energy Efficiency, a Review Focusing on Zero Energy Building. Artificial Intelligence Review 54 (3): 2193–2220.

    Article  Google Scholar 

  • Yang, J., P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R.E. Dickinson. 2013. The Role of Satellite Remote Sensing in Climate Change Studies. Nature Climate Change 3: 875–883.

    Article  Google Scholar 

  • Yang, Y., H. Guan, O. Batelaan, T.R. McVicar, D. Long, S. Piao, W. Liang, B. Liu, Z. Jin, and C.T. Simmons. 2016. Contrasting Responses of Water Use Efficiency to Drought Across Global Terrestrial Ecosystems. Scientific Reports 6 (1): 1–8.

    Google Scholar 

  • Yang, H., S. Piao, C. Huntingford, S. Peng, P. Ciais, A. Chen, G. Zhou, X. Wang, M. Gao, and J. Zscheischler. 2019. Strong But Intermittent Spatial Covariations in Tropical Land Temperature. Geophysical Research Letters 46 (1): 356–364.

    Article  Google Scholar 

  • Zayyad, M.A., and M. Toycan. 2018. Factors Affecting Sustainable Adoption of e-Health Technology in Developing Countries: An Exploratory Survey of Nigerian Hospitals from the Perspective of Healthcare Professionals. PeerJ 6: e4436. ISSN 2167-8359. https://doi.org/10.7717/peerj.4436. https://peerj.com/articles/4436.

    Article  Google Scholar 

  • Zeng, D., Z. Cao, and D.B. Neill. 2021. Artificial Intelligence–Enabled Public Health Surveillance – From Local Detection to Global Epidemic Monitoring and Control. In Artificial Intelligence in Medicine, 437–453. Elsevier.

    Chapter  Google Scholar 

  • Zhang, K., P. Xu, T. Gao, and J. Zhang. 2021a. A Trustworthy Framework of Artificial Intelligence for Power Grid Dispatching Systems. In 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), 418–421. IEEE.

    Chapter  Google Scholar 

  • Zhang, Y., P. Geng, C. Sivaparthipan, and B.A. Muthu. 2021b. Big Data and Artificial Intelligence Based Early Risk Warning System of Fire Hazard for Smart Cities. Sustainable Energy Technologies and Assessments 45: 100986. ISSN 2213-1388. https://doi.org/10.1016/j.seta.2020.100986. https://www.sciencedirect.com/science/article/pii/S2213138820314144.

    Article  Google Scholar 

  • Zhao, J., T. Wang, M. Yatskar, V. Ordonez, and K.-W. Chang. 2017. Men Also Like Shopping: Reducing Gender Bias Amplification Using Corpus-Level Constraints. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 2979–2989. https://doi.org/10.1038/d41586-018-05707-810.18653/v1/D17-1323. https://github.com/uclanlp/reducingbias.

    Google Scholar 

  • Zou, J., and L. Schiebinger. 2018. AI Can Be Sexist and Racist – It’s Time to Make It Fair. Nature 559 (7714): 324–326. ISSN 0028-0836. https://doi.org/10.1038/d41586-018-05707-8. http://www.nature.com/articles/d41586-018-05707-8.

    Article  Google Scholar 

Download references

Acknowledgments

RV acknowledges the support of the KTH Sustainability Office and the KTH Digitalization Platform. SG acknowledges the support provided by the German Federal Ministry for Education and Research (BMBF) in the project “digitainable.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vinuesa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sirmacek, B. et al. (2023). The Potential of Artificial Intelligence for Achieving Healthy and Sustainable Societies. In: Mazzi, F., Floridi, L. (eds) The Ethics of Artificial Intelligence for the Sustainable Development Goals . Philosophical Studies Series, vol 152. Springer, Cham. https://doi.org/10.1007/978-3-031-21147-8_5

Download citation

Publish with us

Policies and ethics