Skip to main content

Dual Arm Aerial Manipulation While Flying, Holding and Perching: Comparative Case Study

  • Conference paper
  • First Online:
ROBOT2022: Fifth Iberian Robotics Conference (ROBOT 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 589))

Included in the following conference series:

  • 817 Accesses

Abstract

This paper presents a comparative study of three operation modes for an aerial manipulation robot, considering as illustrative application example the realization of maintenance operations on power lines while flying, holding, or perching. Relying in our previous works, and taking into account practical considerations and limitations of the aerial platforms and the manipulators in outdoor scenarios, this paper provides a qualitative and quantitative evaluation and comparison of these three operation modes, identifying some relevant factors that determine the reliability of the system in the realization of the intended task. The paper is mainly focused on lightweight and compliant dual arm manipulators that allow the realization of dexterous and bimanual manipulation tasks on flight, as well as the use of one of the arms for estimating the aerial robot position with respect to a grasping point, or exploiting the kinematic redundancy of the arms to maintain the equilibrium while perching on the power line once deployed in the workspace. The paper also considers the dynamics and control of the aerial manipulator in the usual decoupled scheme, identifying the key terms in the model that determine the behavior of the coupled dynamics according to the particular configuration of the arms when integrated in the aerial platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ollero, A., Tognon, M., Suarez, A., Lee, D., Franchi, A.: Past, present, and future of aerial robotic manipulators. IEEE Trans. Rob. 38(1), 626–645 (2021)

    Article  Google Scholar 

  2. Khamseh, H.B., Janabi-Sharifi, F., Abdessameud, A.: Aerial manipulation—a literature survey. Robot. Auton. Syst. 107, 221–235 (2018)

    Article  Google Scholar 

  3. Orsag, M., Korpela, C., Bogdan, S., Oh, P.: Dexterous aerial robots—mobile manipulation using unmanned aerial systems. IEEE Trans. Rob. 33(6), 1453–1466 (2017)

    Article  Google Scholar 

  4. Hamandi, M., Usai, F., Sablé, Q., Staub, N., Tognon, M., Franchi, A.: Design of multirotor aerial vehicles: a taxonomy based on input allocation. Int. J. Rob. Res. 40(8–9), 1015–1044 (2021)

    Article  Google Scholar 

  5. Cacace, J., et al.: Safe local aerial manipulation for the installation of devices on power lines: AERIAL-CORE first year results and designs. Appl. Sci. 11(13), 6220 (2021)

    Article  Google Scholar 

  6. Ollero, A., et al.: The aeroarms project: aerial robots with advanced manipulation capabilities for inspection and maintenance. IEEE Robot. Autom. Mag. 25(4), 12–23 (2018)

    Article  Google Scholar 

  7. Ivanovic, A., Markovic, L., Car, M., Duvnjak, I., Orsag, M.: Towards autonomous bridge inspection: sensor mounting using aerial manipulators. Appl. Sci. 11(18), 8279 (2021)

    Article  Google Scholar 

  8. Ikeda, T., Yasui, S., Fujihara, M., Ohara, K., Ashizawa, S., Ichikawa, A., Fukuda, T.: Wall contact by octo-rotor UAV with one DoF manipulator for bridge inspection. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5122–5127. IEEE (2017)

    Google Scholar 

  9. Bodie, K., et al.: Active interaction force control for contact-based inspection with a fully actuated aerial vehicle. IEEE Trans. Rob. 37(3), 709–722 (2020)

    Article  Google Scholar 

  10. Chermprayong, P., Zhang, K., Xiao, F., Kovac, M.: An integrated delta manipulator for aerial repair: a new aerial robotic system. IEEE Robot. Autom. Mag. 26(1), 54–66 (2019)

    Article  Google Scholar 

  11. Trujillo, M.Á., Martínez-de Dios, J.R., Martín, C., Viguria, A., Ollero, A.: Novel aerial manipulator for accurate and robust industrial NDT contact inspection: a new tool for the oil and gas inspection industry. Sensors 19(6), 1305 (2019)

    Article  Google Scholar 

  12. Suarez, A., Vega, V.M., Fernandez, M., Heredia, G., Ollero, A.: Benchmarks for aerial manipulation. IEEE Robot. Autom. Lett. 5(2), 2650–2657 (2020)

    Article  Google Scholar 

  13. Lippiello, V., Fontanelli, G.A., Ruggiero, F.: Image-based visual-impedance control of a dual-arm aerial manipulator. IEEE Robot. Autom. Lett. 3(3), 1856–1863 (2018)

    Article  Google Scholar 

  14. Suarez, A., Heredia, G., Ollero, A.: Physical-virtual impedance control in ultralightweight and compliant dual-arm aerial manipulators. IEEE Robot. Autom. Lett. 3(3), 2553–2560 (2018)

    Article  Google Scholar 

  15. Suarez, A., Real, F., Vega, V.M., Heredia, G., Rodriguez-Castaño, A., Ollero, A.: Compliant bimanual aerial manipulation: standard and long reach configurations. IEEE Access 8, 88844–88865 (2020)

    Article  Google Scholar 

  16. Suarez, A., Sanchez-Cuevas, P.J., Heredia, G., Ollero, A.: Aerial physical interaction in grabbing conditions with lightweight and compliant dual arms. Appl. Sci. 10(24), 8927 (2020)

    Article  Google Scholar 

  17. Korpela, C., Orsag, M., Oh, P.: Towards valve turning using a dual-arm aerial manipulator. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3411–3416. IEEE (2014)

    Google Scholar 

  18. Paul, H., Miyazaki, R., Ladig, R., Shimonomura, K.: TAMS: development of a multipurpose three-arm aerial manipulator system. Adv. Robot. 35(1), 31–47 (2021)

    Article  Google Scholar 

  19. Sarkisov, Y.S., et al.: Development of sam: cable-suspended aerial manipulator. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 5323–5329. IEEE (2019)

    Google Scholar 

  20. Li, G., Tunchez, A., Loianno, G.: Pcmpc: perception-constrained model predictive control for quadrotors with suspended loads using a single camera and imu. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 2012–2018. IEEE (2021)

    Google Scholar 

  21. Cacace, J., Fontanelli, G.A., Lippiello, V.: A novel hybrid aerial-ground manipulator for pipeline inspection tasks. In: 2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO), pp. 1–6. IEEE (2021)

    Google Scholar 

  22. Suarez, A., et al.: Aerial manipulator with rolling base for inspection of pipe arrays. IEEE Access 8, 162516–162532 (2020)

    Article  Google Scholar 

  23. Bernard, M., Kondak, K., Maza, I., Ollero, A.: Autonomous transportation and deployment with aerial robots for search and rescue missions. J. Field Robot. 28(6), 914–931 (2011)

    Article  Google Scholar 

  24. LiCAS Robotic Arms homepage. https://licas-robotic-arms.com

  25. Suarez, A., Salmoral, R., Garofano-Soldado, A., Heredia, G., Ollero, A.: Aerial device delivery for power line inspection and maintenance. In: 2022 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 30–38 (2022)

    Google Scholar 

  26. Meier, L., Honegger, D., Pollefeys, M.: PX4: a node-based multithreaded open source robotics framework for deeply embedded platforms. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 6235–6240 (2015)

    Google Scholar 

  27. Tomić, T., Ott, C., Haddadin, S.: External wrench estimation, collision detection, and reflex reaction for flying robots. IEEE Trans. Rob. 33(6), 1467–1482 (2017)

    Article  Google Scholar 

  28. Wang, P., Man, Z., Cao, Z., Zheng, J., Zhao, Y.: Dynamics modelling and linear control of quadcopter. In: 2016 International Conference on Advanced Mechatronic Systems (ICAMechS), pp. 498–503. IEEE (2016)

    Google Scholar 

  29. Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Rob. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  30. Smith, C., et al.: Dual arm manipulation—a survey. Robot. Auton. Syst. 60(10), 1340–1353 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the AERIAL-CORE project (H2020-2019-871479) funded by the European Commission, the HAERA (“Sistema robótico híbrido aéreo-acuático para muestreo, monitorización e intervención”, PID2020-119027RB-I00) and the ROBMIND projects (“Robots aéreos inteligentes para inspección y mantenimiento de instalaciones industriales”, PDC2021-121524-I00) funded by the Spanish Ministerio de Ciencia e Innovacion. The work of Alejandro Suarez is funded by the Consejería de Transformación Económica, Industria, Conocimiento y Universidades de la Junta de Andalucía (Spain) through a post-doctoral research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Suarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suarez, A., Ollero, A. (2023). Dual Arm Aerial Manipulation While Flying, Holding and Perching: Comparative Case Study. In: Tardioli, D., Matellán, V., Heredia, G., Silva, M.F., Marques, L. (eds) ROBOT2022: Fifth Iberian Robotics Conference. ROBOT 2022. Lecture Notes in Networks and Systems, vol 589. Springer, Cham. https://doi.org/10.1007/978-3-031-21065-5_22

Download citation

Publish with us

Policies and ethics