Skip to main content

A Survey of Counterfactual Explanations: Definition, Evaluation, Algorithms, and Applications

  • Conference paper
  • First Online:
Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2022)

Abstract

Explainable machine learning aims to reveal the reasons why black-box models make decisions. Counterfactual explanation is an example-based post-hoc explanation method. The counterfactual explanations aims to find the minimum perturbation that changes the model output with respect to the original instance. This study’s goal is to review the literature that has already been written about counterfactual explanations and topics that are relevant to it. We provide a formal definition of counterfactual explanations and counterfactual explainer, and a summary and formulaic description of the properties of the generated counterfactual instances. In addition, we investigate the application of counterfactual explanations in two areas: model robustness, and generating feature importance. The findings demonstrate that the qualities necessary for counterfactual instances cannot be simultaneously satisfied by present methodologies. Finally, we go over potential future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (xai). IEEE Access 6, 52 138–52 160 (2018)

    Google Scholar 

  2. Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning interpretability: a survey on methods and metrics. Electronics 8(8), 832 (2019)

    Article  Google Scholar 

  3. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  4. Kim, B., Khanna, R., Koyejo, O.O.: Examples are not enough, learn to criticize! criticism for interpretability. Adv. Neural Inf. Process. Syst. 29 (2016)

    Google Scholar 

  5. Guidotti, R.: Counterfactual explanations and how to find them: literature review and benchmarking. Data Min. Knowl. Discov., pp. 1–55 (2022)

    Google Scholar 

  6. Karimi, A.-H., Barthe, G., Schölkopf, B., Valera, I.: A survey of algorithmic recourse: definitions, formulations, solutions, and prospects. arXiv preprintarXiv:2010.04050 (2020)

    Google Scholar 

  7. Stepin, I., Alonso, J.M., Catala, A., Pereira-Fariña, M.: A survey of contrastive and counterfactual explanation generation methods for explainable artificial intelligence. IEEE Access 9, 11 974–12 001 (2021)

    Google Scholar 

  8. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MATH  Google Scholar 

  9. Lipton, P.: Contrastive explanation. R. Inst. Philos. Suppl. 27, 247–266 (1990)

    Article  Google Scholar 

  10. Pearl, J., et al.: Models, Reasoning and Inference, vol. 19(2). Cambridge University Press, Cambridge (2000)

    Google Scholar 

  11. Völkel, S.T., Schneegass, C., Eiband, M., Buschek, D.: "What is" intelligent "in intelligent user interfaces? a meta-analysis of 25 years of iui". In: Proceedings of the 25th International Conference on Intelligent User Interfaces, pp. 477–487 (2020)

    Google Scholar 

  12. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the gdpr. Harv. JL & Tech. 31, 841 (2017)

    Google Scholar 

  13. Poyiadzi, R., Sokol, K., Santos-Rodriguez, R., De Bie, T., Flach, P.: Face: feasible and actionable counterfactual explanations. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pp. 344–350 (2020)

    Google Scholar 

  14. Ramon, Y., Martens, D., Provost, F., Evgeniou, T.: A comparison of instance-level counterfactual explanation algorithms for behavioral and textual data: Sedc, lime-c and shap-c. Adv. Data Anal. Classif. 14(4), 801–819 (2020)

    Article  MATH  Google Scholar 

  15. Pawelczyk, M., Broelemann, K., Kasneci, G.: Learning model-agnostic counterfactual explanations for tabular data. In: Proceedings of The Web Conference, pp. 3126–3132 (2020)

    Google Scholar 

  16. Mahajan, D., Tan, C., Sharma, A.: Preserving causal constraints in counterfactual explanations for machine learning classifiers. arXiv preprintarXiv:1912.03277 (2019)

    Google Scholar 

  17. Sharma, S., Henderson, J., Ghosh, J.: Certifai: counterfactual explanations for robustness, transparency, interpretability, and fairness of artificial intelligence models. arXiv preprintarXiv:1905.07857 (2019)

    Google Scholar 

  18. Kommiya Mothilal, R., Mahajan, D., Tan, C., Sharma, A.: Towards unifying feature attribution and counterfactual explanations: Different means to the same end. In: Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 652–663 (2021)

    Google Scholar 

  19. Yousefzadeh, R., O’Leary, D.P.: Interpreting neural networks using flip points. arXiv preprintarXiv:1903.08789 (2019)

    Google Scholar 

  20. Artelt, A., Hammer, B.: Convex density constraints for computing plausible counterfactual explanations. In: International Conference on Artificial Neural Networks, pp. 353–365. Springer (2020)

    Google Scholar 

  21. Ustun, B., Spangher, A., Liu, Y.: Actionable recourse in linear classification. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 10–19 (2019)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China under Grant No. 62172316 and the Key R &D Program of Hebei under Grant No. 20310102D. This work is also supported by the Key R &D Program of Shaanxi under Grant No. 2019ZDLGY13-03-02, and the Natural Science Foundation of Shaanxi Province un-der Grant No. 2019JM-368.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Dai, L., Peng, Q., Tang, R., Li, X. (2023). A Survey of Counterfactual Explanations: Definition, Evaluation, Algorithms, and Applications. In: Xiong, N., Li, M., Li, K., Xiao, Z., Liao, L., Wang, L. (eds) Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery. ICNC-FSKD 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 153. Springer, Cham. https://doi.org/10.1007/978-3-031-20738-9_99

Download citation

Publish with us

Policies and ethics