Skip to main content

IMU-Assisted Direct Visual-Laser Odometry in Challenging Outdoor Environments

  • Conference paper
  • First Online:
Computational Intelligence Methods for Green Technology and Sustainable Development (GTSD 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 567))

  • 476 Accesses

Abstract

Pose estimation is one of the fundamental capabilities that must be fulfilled by autonomous vehicles prior to performing other tasks such as collision avoidance and motion control. Due to the complexity of outdoor environments, this problem can only be effectively solved by fusing multiple modalities such as LiDAR and camera. In this paper, we propose a novel method to tightly couple inertial measurements from IMU into the emerging direct visual-laser odometry framework. To be more specific, a 2-step optimization-based approach is employed. Firstly, inertial measurements are used to introduce additional constraints in direct image alignment. The estimated pose is then refined in IMU-assisted windowed refinement. To validate the proposed method, we carry out intensive experiments in two recent and challenging datasets: UrbanLoco and USVInland. Experimental results show that our framework enjoys more robust and accurate pose estimation in challenging scenarios compared to that of existing popular methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bresson, G., Alsayed, Z., Yu, L., Glaser, S.: Simultaneous localization and mapping: a survey of current trends in autonomous driving. IEEE Trans. Intell. Veh. 2(3), 194–220 (2017)

    Article  Google Scholar 

  2. Jinyu, L., Bangbang, Y., Danpeng, C., Nan, W., Guofeng, Z., Hujun, B.: Survey and evaluation of monocular visual-inertial slam algorithms for augmented reality. Virtual Reality Intell. Hardw. 1(4), 386–410 (2019)

    Article  Google Scholar 

  3. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J.J.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  4. Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: an accurate open-source library for visual, visual-inertial, and multimap slam. IEEE Trans. Robot. 37(6), 1874–1890 (2021)

    Article  Google Scholar 

  5. Cvišić, I., Ćesić, J., Marković, I., Petrović, I.: Soft-slam: computationally efficient stereo visual simultaneous localization and mapping for autonomous unmanned aerial vehicles. J. Field Robot. 35(4), 578–595 (2018)

    Article  Google Scholar 

  6. Zhang, J., Singh, S.: Low-drift and real-time lidar odometry and mapping. Auton. Robot. 41(2), 401–416 (2017)

    Article  Google Scholar 

  7. Qin, C., Ye, H., Pranata, C.E., Han, J., Zhang, S., Liu, M.: Lins: A lidar-inertial state estimator for robust and efficient navigation. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 8899–8906. IEEE (2020)

    Google Scholar 

  8. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2017)

    Article  Google Scholar 

  9. Behley, J., Stachniss, C.: Efficient surfel-based slam using 3d laser range data in urban environments. In: Robotics: Science and Systems, vol. 2018, p. 59 (2018)

    Google Scholar 

  10. Von Stumberg, L., Usenko, V., Cremers, D.: Direct sparse visual-inertial odometry using dynamic marginalization. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2510–2517. IEEE (2018)

    Google Scholar 

  11. Xu, W., Cai, Y., He, D., Lin, J., Zhang, F.: Fast-lio2: Fast direct lidar-inertial odometry (2021). arXiv:2107.06829

  12. Shin, Y.S., Park, Y.S., Kim, A.: Dvl-slam: sparse depth enhanced direct visual-lidar slam. Auton. Robot. 44(2), 115–130 (2020)

    Article  Google Scholar 

  13. Wen, W., Zhou, Y., Zhang, G., Fahandezh-Saadi, S., Bai, X., Zhan, W., Tomizuka, M., Hsu, L.T.: Urbanloco: a full sensor suite dataset for mapping and localization in urban scenes. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 2310–2316. IEEE (2020)

    Google Scholar 

  14. Cheng, Y., Jiang, M., Zhu, J., Liu, Y.: Are we ready for unmanned surface vehicles in inland waterways? The usvinland multisensor dataset and benchmark. IEEE Robot. Autom. Lett. 6(2), 3964–3970 (2021)

    Article  Google Scholar 

  15. Sola, J., Deray, J., Atchuthan, D.: A micro lie theory for state estimation in robotics (2018). arXiv:1812.01537

  16. Forster, C., Carlone, L., Dellaert, F., Scaramuzza, D.: On-manifold preintegration for real-time visual-inertial odometry. IEEE Trans. Robot. 33(1), 1–21 (2016)

    Article  Google Scholar 

  17. Zubizarreta, J., Aguinaga, I., Montiel, J.M.M.: Direct sparse mapping. IEEE Trans. Robot. 36(4), 1363–1370 (2020)

    Article  Google Scholar 

  18. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of rgb-d slam systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 573–580. IEEE (2012)

    Google Scholar 

  19. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)

    Google Scholar 

Download references

Acknowledgement

We acknowledge the support of time and facilities from Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc-Huy Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pham, QH., Tran, NH., Nguyen, TD. (2023). IMU-Assisted Direct Visual-Laser Odometry in Challenging Outdoor Environments. In: Huang, YP., Wang, WJ., Quoc, H.A., Le, HG., Quach, HN. (eds) Computational Intelligence Methods for Green Technology and Sustainable Development. GTSD 2022. Lecture Notes in Networks and Systems, vol 567. Springer, Cham. https://doi.org/10.1007/978-3-031-19694-2_44

Download citation

Publish with us

Policies and ethics