Skip to main content

Complementing Direct Speed Control with Neural Networks for Wind Turbine MPPT

  • Conference paper
  • First Online:
17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022) (SOCO 2022)

Abstract

The natural operation of wind turbines (WT) shows a nonlinear behavior which makes it difficult for the system to be controlled. Because of this, artificial intelligence techniques appear as promising control solutions. In this work, artificial neural networks (ANN) are used to complement the Direct Speed Control (DSC) of a wind turbine. Specifically, a neural network is used for the Maximum Power Point Tracking (MPPT) of a wind turbine model, controlling the generator speed and maintaining the active power into the correct levels to reach a power coefficient (\({C}_{p}\)) within its optimum values. The real characteristics of a 1.5 MW wind turbine are considered. OpenFast and Matlab/Simulink software tools are used to model and simulate the non-linear WT and the controller, respectively. The intelligent proposed solution is compared with the standard control embedded in OpenFast with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chaoui, H., Miah, S., Oukaour, A., Gualous, H.: Maximum power point tracking of wind turbines with neural networks and genetic algorithms. In: IECON 2014–40th Annual Conference of the IEEE Industrial Electronics Society, pp. 197–201. IEEE, October 2014

    Google Scholar 

  2. Sierra-García, J.E., Santos, M.: Redes neuronales y aprendizaje por refuerzo en el control de turbinas eólicas. Revista Iberoamericana de Automática e Informática industrial 18(4), 327–335 (2021)

    Article  Google Scholar 

  3. Sierra-Garcia, J.E., Santos, M.: Deep learning and fuzzy logic to implement a hybrid wind turbine pitch control. Neural Comput. Appl. 1–15 (2021). https://doi.org/10.1007/s00521-021-06323-w

  4. Muñoz, E., Ayala, E., Pozo, N., Simani, S.: Fuzzy PID control system analysis for a wind turbine maximum power point tracking using FAST and Matlab simulink. In: Brazilian Technology Symposium, pp. 905–917. Springer, Cham, October 2020

    Google Scholar 

  5. Muñoz, E., Ayala, E., Pozo, N.: Estrategia de Control Fuzzy PI en una Turbina Eólica con Generador de Inducción Doblemente Alimentado para Maximizar la Extracción de Potencia en Presencia de Perturbaciones. Revista Técnica” energía”, 18(1), 1–10 (2021)

    Google Scholar 

  6. El Aissaoui, H., El Ougli, A., Tidhaf, B.: Neural networks and fuzzy logic based maximum power point tracking control for wind energy conversion system. Adv. Sci. Technol. Eng. Syst. J. 6(2), 586–592 (2021)

    Article  Google Scholar 

  7. Rhaili, S.E., Abbou, A., El Hichami, N., Marhaoui, S.: A new strategy based neural networks MPPT controller for five-phase PMSG based variable-speed wind turbine. In: 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), pp. 1038–1043. IEEE, October 2018

    Google Scholar 

  8. Mesemanolis, A., Mademlis, C.: A neural network based MPPT controller for variable speed wind energy conversion systems. In: 8th Med. Conf. Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2012), pp. 1–6 (2012)

    Google Scholar 

  9. Thongam, J.S., Bouchard, P., Beguenane, R., Fofana, I.: Neural network based wind speed sensorless MPPT controller for variable speed wind energy conversion systems. In: 2010 IEEE Electrical Power & Energy Conference, pp. 1–6. IEEE, August 2010

    Google Scholar 

  10. Sierra-García, J.E., Santos, M.: Performance analysis of a wind turbine pitch neurocontroller with unsupervised learning. Complexity (2020)

    Google Scholar 

  11. Sierra-García, J.E., Santos, M.: Switched learning adaptive neuro-control strategy. Neurocomputing 452, 450–464 (2021)

    Article  Google Scholar 

  12. Sierra, J.E., Santos, M.: Wind and payload disturbance rejection control based on adaptive neural estimators: application on quadrotors. Complexity (2019)

    Google Scholar 

  13. Santos, M., Dexter, A.L.: Temperature control in liquid helium cryostat using self-learning neurofuzzy controller. IEE Proc. Control Theory Appl. 148(3), 233–238 (2001)

    Article  Google Scholar 

  14. Yang, B., Zhang, X., Yu, T., Shu, H., Fang, Z.: Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine. Energy Convers. Manage. 133, 427–443 (2017)

    Article  Google Scholar 

  15. Sahri, Y., Tamalouzt, S., Belaid, S.L.: Direct torque control of DFIG driven by wind turbine system connected to the grid. In: 2018 International Conference on Wind Energy and Applications in Algeria (ICWEAA), pp. 1–6. IEEE, November 2018

    Google Scholar 

  16. Semrau, G., Rimkus, S., Das, T.: Nonlinear systems analysis and control of variable speed wind turbines for multiregime operation. J. Dyn. Syst. Measure. Control 137(4) (2015)

    Google Scholar 

  17. Abad, G., Lopez, J., Rodriguez, M., Marroyo, L., Iwanski, G.: Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation. John Wiley & Sons (2011)

    Book  Google Scholar 

  18. Senatore, P.: Modelado y control de la máquina sincrónica de reluctancia. Aplicación en un aerogenerador. Tesis de Máster. Universidad de la República, Montevideo (2013)

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Spanish Ministry of Science and Innovation under the project MCI/AEI/FEDER number RTI2018–094902-B-C21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Muñoz Palomeque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muñoz Palomeque, E., Sierra-García, J.E., Santos, M. (2023). Complementing Direct Speed Control with Neural Networks for Wind Turbine MPPT. In: García Bringas, P., et al. 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022. Lecture Notes in Networks and Systems, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-031-18050-7_48

Download citation

Publish with us

Policies and ethics