Skip to main content

Data Science of Microbiome: Does Gender Matter

  • Conference paper
  • First Online:
Advanced Technologies, Systems, and Applications VII (IAT 2022)

Abstract

Machine learning (ML) modeling of the human microbiome has the potential to identify biomarkers and participate in the early diagnosis of a number of medical conditions. Prior to investigating disease microbiome biomarkers, a healthy state of biomarkers needs to be established. These can vary based on different conditions (including gender). We used the currently available technology to try to discover the difference between the microbiome of a different gender as this can help guide personalized medicine. We trained a Random Forest classifier model that used fecal 16S rRNA sequence data to differentiate between male and female subjects based on the same age, BMI, country of residence, and diet. Before the classification process, bioinformatics analysis was performed using the QIIME2–2020.2 tool which resulted in profiling microbiome communities present in host organisms. The Alpha diversity test that was conducted afterward did not discover differences in male and female subjects. Prior to classification, feature selection has been performed using the forests of trees to evaluate the importance of features in the dataset. It was experimented with 95%, 90%, and 85% coverage of features for each classification run. 5-fold cross-validation yielded high accuracy results on multiple subsets (subjects in the 30s, subjects in the 40s, non-omnivores), going above 80%. Our results have shown that Random Forest, as a stable algorithm, can be modeled on microbiome data to achieve high precision (close to 90%) with relatively few parameters. This suggests that the microbiome of different genders is highly distinguishable, and that gender is a possible suitable marker for personalized decision-making in medicine that involves gut microbiome data. The new methods of analysis of gut microbiome data can be used to confirm these results with more precise analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Data Availability

All data generated and analysed during this study are deposited to the GiHub repository (https://github.com/dzb07/microbiome).

References

  1. Bull, M.J., Plummer, N.T.: Part 1: The Human Gut Microbiome in Health and Disease. (2014)

    Google Scholar 

  2. Freire, A.C., Basit, A.W., Choudhary, R., Piong, C.W., Merchant, H.: Does sex matter? The influence of gender on gastrointestinal physiology and drug delivery

    Google Scholar 

  3. Chen, J.J., Zheng, P., Liu, Y.Y., Zhong, X.G., Wang, H.Y., Guo, Y.J., et al.: Sex differences in gut microbiota in patients with major depressive disorder. Neuropsychiatric Dis. Treat. 14, 647–655 (2018). https://doi.org/10.2147/NDT.S159322

    Article  Google Scholar 

  4. Haro, C., Rangel-Zúñiga, O.A., Alcalá-Díaz, J.F., Gómez-Delgado, F., Pérez-Martínez, P., Delgado-Lista, J., et al.: Intestinal microbiota is influenced by gender and body mass index. PLoS ONE 11, e0154090 (2016). https://doi.org/10.1371/journal.pone.0154090

    Article  Google Scholar 

  5. Markle, J.G.M., Frank, D.N., Mortin-Toth, S., Robertson, C.E., Feazel, L.M., Rolle-Kampczyk, U., et al.: Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 1979(339), 1084–1088 (2013). https://doi.org/10.1126/science.1233521

    Article  Google Scholar 

  6. Valeri, F., Endres, K.: How biological sex of the host shapes its gut microbiota. Front. Neuroendocrinol. 61, 100912 (2021)

    Article  Google Scholar 

  7. Mueller, S., Saunier, K., Hanisch, C., Norin, E., Alm, L., Midtvedt, T., et al.: Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl. Environ. Microbiol. 72, 1027–1033 (2006). https://doi.org/10.1128/AEM.72.2.1027-1033.2006

    Article  Google Scholar 

  8. Oki, K., Toyama, M., Banno, T., Chonan, O., Benno, Y., Watanabe, K.: Comprehensive analysis of the fecal microbiota of healthy Japanese adults reveals a new bacterial lineage associated with a phenotype characterized by a high frequency of bowel movements and a lean body type. BMC Microbiol. 16, 1–13 (2016). https://doi.org/10.1186/s12866-016-0898-x

    Article  Google Scholar 

  9. Gerritsen, J., Smidt, H., Rijkers, G.T., et al.: Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr. 6, 209–240 (2011). https://doi.org/10.1007/s12263-011-0229-7

    Article  Google Scholar 

  10. Belkaid, Y., Hand, T.W.: Role of the microbiota in immunity and inflammation. Cell 157(1), 121–141 (2014)

    Article  Google Scholar 

  11. Ding, T., Schloss, P.D.: Dynamics and associations of microbial community types across the human body. Nature 509, 357–360 (2014). https://doi.org/10.1038/nature13178

    Article  Google Scholar 

  12. Zhou, Y.H., Gallins, P.: A review and tutorial of machine learning methods for microbiome host trait prediction. Front. Genet. 10 (2019). https://doi.org/10.3389/fgene.2019.00579

  13. Schmitt, S., Tsai, P., Bell, J., Fromont, J., Ilan, M., Lindquist, N., et al.: Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J. 6, 564–576 (2012). https://doi.org/10.1038/ismej.2011.116

    Article  Google Scholar 

  14. Vangay, P., Hillmann, B.M., Knights, D.: Microbiome learning Repo (ML Repo): a public repository of microbiome regression and classification tasks. Gigascience 8, giz042 (2019). https://doi.org/10.1093/gigascience/giz042

    Article  Google Scholar 

  15. Breiman, L.: Random Forests (2001)

    Google Scholar 

  16. Chen, X., Ishwaran, H.: Random forests for genomic data analysis. Genomics 99, 323–329 (2012)

    Article  Google Scholar 

  17. McDonald, D., Hyde, E., Debelius, J.W., Morton, J.T., Gonzalez, A., Ackermann, G., et al.: American gut: an open platform for citizen science microbiome research. Msystems 3(3), e00031-18 (2022)

    Google Scholar 

  18. Johnson, J.S., Spakowicz, D.J., Hong, B.Y., Petersen, L.M., Demkowicz, P., Chen, L., et al.: Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10, 1–11 (2019). https://doi.org/10.1038/s41467-019-13036-1

    Article  Google Scholar 

  19. Leinonen, R., Akhtar, R., Birney, E., Bower, L., Cerdeno-Tárraga, A., Cheng, Y., et al.: The European nucleotide archive. Nucleic Acids Res. 39, D28–D31 (2011). https://doi.org/10.1093/nar/gkq967

    Article  Google Scholar 

  20. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., et al.: QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010)

    Article  Google Scholar 

  21. Yilmaz, P., Parfrey, L.W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., et al.: The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014). https://doi.org/10.1093/nar/gkt1209

    Article  Google Scholar 

  22. Li, H.: Microbiome, metagenomics, and high-dimensional compositional data analysis. Annu. Rev. Stat. Its Appl. 2, 73–94 (2015). https://doi.org/10.1146/annurev-statistics-010814-020351

    Article  Google Scholar 

  23. Cai, J., Luo, J., Wang, S., Yang, S.: Feature selection in machine learning: a new perspective. Neurocomputing 300, 70–79 (2018). https://doi.org/10.1016/j.neucom.2017.11.077

    Article  Google Scholar 

  24. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D., Fernández-Delgado, A.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1), 3133–3181 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Gaulke, C.A., Sharpton, T.J.: The influence of ethnicity and geography on human gut microbi-ome composition. Nat. Med. 24(10), 1495–1496 (2018). https://doi.org/10.1038/s41591-018-0210-8

    Article  Google Scholar 

  26. Conlon, M.A., Bird, A.R.: The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7(1), 17–44 (2015)

    Article  Google Scholar 

  27. Takagi, T., Naito, Y., Inoue, R., Kashiwagi, S., Uchiyama, K., Mizushima, K., et al.: The influence of longgterm use of proton pump inhibitors on the gut microbiota: an age-sex-matched case-control study. J. Clin. Biochem. Nutr. 62, 100–105 (2018). https://doi.org/10.3164/jcbn.17778

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasminka Hasic Telalovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Basic-Cicak, D., Hasic Telalovic, J. (2023). Data Science of Microbiome: Does Gender Matter. In: Ademović, N., Mujčić, E., Mulić, M., Kevrić, J., Akšamija, Z. (eds) Advanced Technologies, Systems, and Applications VII. IAT 2022. Lecture Notes in Networks and Systems, vol 539. Springer, Cham. https://doi.org/10.1007/978-3-031-17697-5_49

Download citation

Publish with us

Policies and ethics