Skip to main content

Survey on Enabling Network Slicing Based on SDN/NFV

  • Conference paper
  • First Online:
International Conference on Information Systems and Intelligent Applications (ICISIA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 550))

Abstract

Network slicing has surfaced as one of the most promising technologies for enabling a variety of services in order to satisfy the demands of fifth-generation networks in new-generation networks. Although there are many surveys on network slicing, there is no comprehensive study of all aspects including slicing implementation scenarios and network slicing security. In this paper, we give an overview of network slicing based on software-defined networks and network function virtualization, and also a comprehensive analysis of the fundamental concepts of slicing architecture. On the other hand, we highlight the different scenarios for implementing the network slicing concept, after which we discuss the security concept of network slicing, threats and weaknesses in the network slice architecture, and possible solutions for this. Finally, we review the latest research findings in the field of achieving basic security objectives for network slicing. This paper paves the way for academics to work on attaining network slicing security in a variety of slicing scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khan LU, Yaqoob I, Tran NH, Han Z, Hong CS (2020) Network slicing: recent advances, taxonomy, requirements, and open research challenges. IEEE Access 8:36009–36028

    Article  Google Scholar 

  2. Afolabi I, Taleb T, Samdanis K, Ksentini A, Flinck H (2018) Network slicing and softwarization: a survey on principles, enabling technologies, and solutions. IEEE Commun Surv Tutor 20(3):2429–2453

    Article  Google Scholar 

  3. Bozakov Z, Papadimitriou P (2014) Towards a scalable software-defined network virtualization platform. In: 2014 IEEE network operations and management symposium (NOMS). IEEE, pp 1–8

    Google Scholar 

  4. Chen Q, Wang X, Lv Y (2018) An overview of 5G network slicing architecture. In: AIP conference proceedings, vol 1967, no 1. AIP Publishing LLC, p 020004

    Google Scholar 

  5. Sivarajan KN (2020) Network slicing and SDN: new opportunities for telecom operators. CSI Trans ICT 8(1):15–20

    Article  Google Scholar 

  6. Yousaf FZ, Gramaglia M, Friderikos V, Gajic B, Von Hugo D, Sayadi B, Sciancalepore V, Crippa MR (2017) Network slicing with flexible mobility and QoS/QoE support for 5G Networks. In: 2017 IEEE international conference on communications workshops (ICC Workshops). IEEE, pp 1195–1201

    Google Scholar 

  7. Richart M, Baliosian J, Serrat J, Gorricho JL (2016) Resource slicing in virtual wireless networks: a survey. IEEE Trans Netw Serv Manage 13(3):462–476

    Article  Google Scholar 

  8. Zhang H, Liu N, Chu X, Long K, Aghvami AH, Leung VC (2017) Network slicing based 5G and future mobile networks: mobility, resource management, and challenges. IEEE Commun Mag 55(8):138–145

    Article  Google Scholar 

  9. Caballero P, Banchs A, De Veciana G, Costa-Pérez X, Azcorra A (2018) Network slicing for guaranteed rate services: admission control and resource allocation games. IEEE Trans Wireless Commun 17(10):6419–6432

    Article  Google Scholar 

  10. Muñoz R, Vilalta R, Casellas R, Martinez R, Szyrkowiec T, Autenrieth A, López V, López, D (2015) Integrated SDN/NFV management and orchestration architecture for dynamic deployment of virtual SDN control instances for virtual tenant networks. J Opt Commun Netw 7(11):B62–B70

    Google Scholar 

  11. Wijethilaka S, Liyanage M (2021) Survey on network slicing for Internet of Things realization in 5G networks. IEEE Commun Surv Tutor 23(2):957–994

    Article  Google Scholar 

  12. Li Q, Wu G, Papathanassiou A, Mukherjee U (2016) An end-to-end network slicing framework for 5G wireless communication systems. arXiv preprint arXiv:1608.00572

  13. Shen X, Gao J, Wu W, Lyu K, Li M, Zhuang W, Li X, Rao J (2020) AI-assisted network-slicing based next-generation wireless networks. IEEE Open J Veh Technol 1:45–66

    Google Scholar 

  14. Popovski P, Trillingsgaard KF, Simeone O, Durisi G (2018) 5G wireless network slicing for eMBB, URLLC, and mMTC: a communication-theoretic view. IEEE Access 6:55765–55779

    Article  Google Scholar 

  15. Kalør AE, Guillaume R, Nielsen JJ, Mueller A, Popovski P (2017) Network slicing for ultra-reliable low latency communication in industry 4.0 scenarios. arXiv preprint arXiv:1708.09132

  16. Delgado C, Canales M, Ortín J, Gállego JR, Redondi A, Bousnina S, Cesana M (2017) Joint application admission control and network slicing in virtual sensor networks. IEEE Internet Things J 5(1):28–43

    Article  Google Scholar 

  17. Ordonez-Lucena J, Ameigeiras P, Lopez D, Ramos-Munoz JJ, Lorca J, Folgueira J (2017) Network slicing for 5G with SDN/NFV: concepts, architectures, and challenges. IEEE Commun Mag 55(5):80–87

    Google Scholar 

  18. Foukas X, Patounas G, Elmokashfi A, Marina MK (2017) Network slicing in 5G: survey and challenges. IEEE Commun Mag 55(5):94–100

    Article  Google Scholar 

  19. Kaloxylos A (2018) A survey and an analysis of network slicing in 5G networks. IEEE Commun Stand Mag 2(1):60–65

    Article  Google Scholar 

  20. Barakabitze AA, Ahmad A, Mijumbi R, Hines A (2020) 5G network slicing using SDN and NFV: a survey of taxonomy, architectures and future challenges. Comput Netw 167:106984

    Article  Google Scholar 

  21. Schaller S, Hood D (2017) Software defined networking architecture standardization. Comput Stand Interf 54:197–202

    Article  Google Scholar 

  22. Goransson P, Black C, Culver T (2016) Software defined networks: a comprehensive approach. Morgan Kaufmann

    Google Scholar 

  23. Latif Z, Sharif K, Li F, Karim MM, Biswas S, Wang Y (2020) A comprehensive survey of interface protocols for software defined networks. J Netw Comput Appl 156:102563

    Article  Google Scholar 

  24. Paliwal M, Shrimankar D, Tembhurne O (2018) Controllers in SDN: a review report. IEEE Access 6:36256–36270

    Article  Google Scholar 

  25. Ahmad S, Mir AH (2021) Scalability, consistency, reliability and security in SDN controllers: a survey of diverse SDN controllers. J Netw Syst Manage 29(1):1–59

    Article  Google Scholar 

  26. Braun W, Menth M (2014) Software-defined networking using OpenFlow: protocols, applications and architectural design choices. Future Internet 6(2):302–336

    Article  Google Scholar 

  27. Lara A, Kolasani A, Ramamurthy B (2013) Network innovation using openflow: a survey. IEEE Commun Surv Tutor 16(1):493–512

    Article  Google Scholar 

  28. Benzekki K, El Fergougui A, Elbelrhiti Elalaoui A (2016) Software‐defined networking (SDN): a survey. Secur Commun Netw 9(18):5803–5833

    Google Scholar 

  29. Rowshanrad S, Namvarasl S, Abdi V, Hajizadeh M, Keshtgary M (2014) A survey on SDN, the future of networking. J Adv Comput Sci Technol 3(2):232–248

    Article  Google Scholar 

  30. Chica JCC, Imbachi JC, Vega JFB (2020) Security in SDN: a comprehensive survey. J Netw Comput Appl 159:102595

    Article  Google Scholar 

  31. Maleh Y, Qasmaoui Y, El Gholami K, Sadqi Y, Mounir S (2022) A comprehensive survey on SDN security: threats, mitigations, and future directions. J Reliab Intell Environ 1–39

    Google Scholar 

  32. Ahmad I, Namal S, Ylianttila M, Gurtov A (2015) Security in software defined networks: a survey. IEEE Commun Surv Tutor 17(4):2317–2346

    Article  Google Scholar 

  33. Dacier MC, König H, Cwalinski R, Kargl F, Dietrich S (2017) Security challenges and opportunities of software-defined networking. IEEE Secur Priv 15(2):96–100

    Article  Google Scholar 

  34. Li W, Meng W, Kwok LF (2016) A survey on OpenFlow-based Software Defined Networks: security challenges and countermeasures. J Netw Comput Appl 68:126–139

    Article  Google Scholar 

  35. Manguri KH, Omer SM (2022) SDN for IoT environment: a survey and research challenges. In: ITM web of conferences, vol 42. EDP Sciences, p 01005

    Google Scholar 

  36. Ghonge MM (2022) Software-defined network-based vehicular ad hoc networks: a comprehensive review. Softw Defined Netw Ad Hoc Netw 33–53

    Google Scholar 

  37. Mohamed A, Hamdan M, Khan S, Abdelaziz A, Babiker SF, Imran M, Marsono MN (2021) Software-defined networks for resource allocation in cloud computing: a survey. Comput Netw 195:108151

    Article  Google Scholar 

  38. Vestin J (2018) SDN-enabled resiliency in computer networks. Doctoral dissertation, Karlstads universitet

    Google Scholar 

  39. Oktian YE, Lee S, Lee H, Lam J (2017) Distributed SDN controller system: a survey on design choice. Comput Netw 121:100–111

    Google Scholar 

  40. Bannour F, Souihi S, Mellouk A (2017) Distributed SDN control: survey, taxonomy, and challenges. IEEE Commun Surv Tutor 20(1):333–354

    Article  Google Scholar 

  41. Chaudhari S, Mani RS, Raundale P (2016) SDN network virtualization survey. In: 2016 International conference on wireless communications, signal processing and networking (WiSPNET). IEEE, pp 650–655

    Google Scholar 

  42. Schaffrath G, Werle C, Papadimitriou P, Feldmann A, Bless R, Greenhalgh A, Wundsam A, Kind M, Maennel O, Mathy L (2009) Network virtualization architecture: proposal and initial prototype. In: Proceedings of the 1st ACM workshop on virtualized infrastructure systems and architectures, pp 63–72

    Google Scholar 

  43. Veeraraghavan M, Sato T, Buchanan M, Rahimi R, Okamoto S, Yamanaka N (2017) Network function virtualization: a survey. IEICE Trans Commun 2016NNI0001

    Google Scholar 

  44. Mijumbi R, Serrat J, Gorricho JL, Bouten N, De Turck F, Boutaba R (2015) Network function virtualization: state-of-the-art and research challenges. IEEE Commun Surv Tutor 18(1):236–262

    Article  Google Scholar 

  45. Blenk A, Basta A, Reisslein M, Kellerer W (2015) Survey on network virtualization hypervisors for software defined networking. IEEE Commun Surv Tutor 18(1):655–685

    Article  Google Scholar 

  46. Jin B, Guo B, Huang H, Li S, Shang Y, Huang S (2017) An implementation of optical network virtualization based on OpenVirteX. In: 2017 16th international conference on optical communications and networks (ICOCN). IEEE, pp 1–3

    Google Scholar 

  47. Sherwood R, Gibb G, Yap KK, Appenzeller G, Casado M, McKeown N, Parulkar G (2009) Flowvisor: a network virtualization layer. OpenFlow Switch Consortium, Tech. Rep 1:132

    Google Scholar 

  48. Jin X, Gossels J, Rexford J, Walker D (2015) {CoVisor}: a compositional hypervisor for {software-defined} networks. In: 12th USENIX symposium on networked systems design and implementation (NSDI 2015), pp 87–101

    Google Scholar 

  49. Liu L, Muñoz R, Casellas R, Tsuritani T, Martínez R, Morita I (2013) OpenSlice: an OpenFlow-based control plane for spectrum sliced elastic optical path networks. Opt Express 21(4):4194–4204

    Article  Google Scholar 

  50. Van Giang N, Kim YH (2014) Slicing the next mobile packet core network. In: 2014 11th international symposium on wireless communications systems (ISWCS). IEEE, pp 901–904

    Google Scholar 

  51. Gudipati A, Li LE, Katti S (2014) RadioVisor: a slicing plane for radio access networks. In: Proceedings of the third workshop on Hot topics in software defined networking, pp 237–238

    Google Scholar 

  52. Blenk A, Basta A, Kellerer W (2015) HyperFlex: an SDN virtualization architecture with flexible hypervisor function allocation. In: 2015 IFIP/IEEE international symposium on integrated network management (IM). IEEE, pp 397–405

    Google Scholar 

  53. Nurkahfi GN, Mitayani A, Mardiana VA, Dinata MMM (2019) Comparing flowvisor and open virtex as SDN-based site-to-site VPN services solution. In: 2019 international conference on radar, antenna, microwave, electronics, and telecommunications (ICRAMET). IEEE, pp 142–147

    Google Scholar 

  54. Chowdhury NMK, Boutaba R (2010) A survey of network virtualization. Comput Netw 54(5):862–876

    Article  Google Scholar 

  55. Napolitano A, Giorgetti A, Kondepu K, Valcarenghi L, Castoldi P (2018) Network slicing: an overview. In: 2018 IEEE 4th international forum on research and technology for society and industry (RTSI). IEEE, pp 1–4

    Google Scholar 

  56. Al-Asfoor M, Abed MH (2022) The effect of the topology adaptation on search performance in overlay network. In: Expert clouds and applications. Springer, Singapore, pp 65–73

    Google Scholar 

  57. Vakharkar S, Sakhare N (2022) Critical analysis of virtual LAN and its advantages for the campus networks. In: Mobile computing and sustainable informatics. Springer, Singapore, pp 733–748

    Google Scholar 

  58. Devlic A, Hamidian A, Liang D, Eriksson M, Consoli A, Lundstedt J (2017) NESMO: network slicing management and orchestration framework. In: 2017 IEEE international conference on communications workshops (ICC workshops). IEEE, pp 1202–1208

    Google Scholar 

  59. Habibi MA, Han B, Schotten HD (2017) Network slicing in 5G mobile communication architecture, profit modeling, and challenges. arXiv preprint arXiv:1707.00852

  60. Abbas K, Khan TA, Afaq M, Song WC (2021) Network slice lifecycle management for 5g mobile networks: an intent-based networking approach. IEEE Access 9:80128–80146

    Article  Google Scholar 

  61. S Staff (2017) What is dynamic network slicing? What is dynamic network slicing? https://www.sdxcentral.com/5g/definitions/dynamic-network-slicing/

  62. Cunha VA, da Silva E, de Carvalho MB, Corujo D, Barraca JP, Gomes, D., Granville LZ, Aguiar RL (2019) Network slicing security: challenges and directions. Internet Technol Lett 2(5):e125

    Google Scholar 

  63. Ni J, Lin X, Shen XS (2018) Efficient and secure service-oriented authentication supporting network slicing for 5G-enabled IoT. IEEE J Sel Areas Commun 36(3):644–657

    Article  Google Scholar 

  64. Liu J, Zhang L, Sun R, Du X, Guizani M (2018) Mutual heterogeneous signcryption schemes for 5G network slicings. IEEE Access 6:7854–7863

    Article  Google Scholar 

  65. Porambage P, Miche Y, Kalliola A, Liyanage M, Ylianttila M (2019) Secure keying scheme for network slicing in 5G architecture. In: 2019 IEEE conference on standards for communications and networking (CSCN). IEEE, pp 1–6

    Google Scholar 

  66. Bonfim M, Santos M, Dias K, Fernandes S (2020) A real‐time attack defense framework for 5G network slicing. Softw Pract Exp 50(7):1228–125

    Google Scholar 

  67. Thantharate A, Paropkari R, Walunj V, Beard C, Kankariya P (2020) Secure5g: a deep learning framework towards a secure network slicing in 5g and beyond. In: 2020 10th annual computing and communication workshop and conference (CCWC). IEEE, pp 0852–0857

    Google Scholar 

  68. Wang W, Liang C, Chen Q, Tang L, Yanikomeroglu H (2022) Distributed online anomaly detection for virtualized network slicing environment. arXiv preprint arXiv:2201.01900

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alharith A. Abdullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahdi, S.S., Abdullah, A.A. (2023). Survey on Enabling Network Slicing Based on SDN/NFV. In: Al-Emran, M., Al-Sharafi, M.A., Shaalan, K. (eds) International Conference on Information Systems and Intelligent Applications. ICISIA 2022. Lecture Notes in Networks and Systems, vol 550. Springer, Cham. https://doi.org/10.1007/978-3-031-16865-9_59

Download citation

Publish with us

Policies and ethics