Skip to main content

Abatement of PAHs by Engineered Nanomaterials

  • Reference work entry
  • First Online:
Handbook of Green and Sustainable Nanotechnology
  • 89 Accesses

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are the class of persistent organic and hazardous pollutants. Increased population, burning of coal, rapid industrialization, and extensive use of oil fuels are their primary sources. Hence, their frequent occurrence has been detected in soil, sludge, water, and other contamination sources. Considering global presence, toxicity, and potential for bioaccumulation, advanced low-cost techniques are highly mandatory. Various methods based on thermal, microbial, photolysis, and conventional adsorbents have been used for complete eradication. Recently, engineered nanomaterials (ENMs) are highly preferred because of definite properties like photocatalysis, quantum confinement, and high surface-to-volume ratio. In this direction, many ENMs as efficient photocatalysts (TiO2, Ag3PO4, ZnO, MHCFs) are used to degrade PAHs (naphthalene, anthracene, and chrysene) in the environment under UV and sunlight irradiation. Photocatalysis has involved the initial adsorption followed by radical mechanism (OH and O2) degradation. Here, we have summarized recent literature on abatement of various PAHs by ENMs and possible degradation pathways for respective PAH. Specific attention to current status, classification of PAHs, challenges, and prospects in the future for enhanced photodegradation of PAHs are also discussed. In addition, green nanomaterials based on plant extract have also been discussed, with a literature gap prevailing in the current research area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Petrol 25:107–123

    Article  Google Scholar 

  • Bai YP, Luo XJ, Zhao YL, Li CX, Xu DS, Xu JH (2017) Efficient degradation of malathion in the presence of detergents using an engineered organophosphorus hydrolase highly expressed by Pichia pastoris without methanol induction. J agricul food chem 65(41):9094–9100

    Google Scholar 

  • Balmer ME, Goss K-U, Schwarzenbach RP et al (2000) Photolytic transformation of organic pollutants on soil surfaces an experimental approach. Environ Sci Technol 34:1240–1245

    Article  CAS  Google Scholar 

  • Chen NN, Luo D, Yao XQ, Yu C, Wang Y, Wang Q, Liu GP (2012) Pesticides induce spatial memory deficits with synaptic impairments and an imbalanced tau phosphorylation in rats. J Alzheimer’s Dis 30(3):585–594

    Google Scholar 

  • Chen H, Wen M, Huang Z, Wu QJ, Tu T et al (2015) Construction of Cu@ZnO nanobrushes based on Cu nanowires and their high-performance selective degradation of polycyclic aromatic hydrocarbons. J Mater Chem 3:600–607

    Google Scholar 

  • Cheng K, Cai Z, Fu J, Sun X, Sun W, Chen L, Zhang D, Liu W et al (2019) Synergistic adsorption of Cu (II) and photocatalytic degradation of phenanthrene by a jaboticaba-like TiO2/titanate nanotube composite: an experimental and theoretical study. Chem Eng J 358:1155–1165

    Article  CAS  Google Scholar 

  • Coleman HM, Vimonses V, Leslie G, Amal R (2007) Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes. J Hazard Mater 146:496–501

    Google Scholar 

  • Dass S, Muneer M, Gopidas KR et al (1994) Photocatalytic degradation of wastewater pollutants. Titanium-dioxide-mediated oxidation of polynuclear aromatic hydrocarbons. J Photochem Photobiol A 77:83–88

    Article  Google Scholar 

  • Diao X, Magalhaes E, Silver J (2019) Cities and rural transformation: A spatial analysis of rural livelihoods in Ghana. World Dev 121:141–157

    Google Scholar 

  • Dong D, Li P, Li X, Zhao Q, Zhang Y, Jia C, Li P et al (2010) Investigation on the photocatalytic degradation of pyrene on soil surfaces using nanometer anatase TiO2 under UV irradiation. J Hazard Mater 174(1–3):859–863

    Article  CAS  Google Scholar 

  • Farhadian M, Sangpour P, Hosseinzadeh G (2016) Preparation and photocatalytic activity of WO 3–MWCNT nanocomposite for degradation of naphthalene under visible light irradiation. Rsc Advances 6(45):39063–39073.

    Google Scholar 

  • Fu W, Xu M, Sun K, Hu L, Cao W, Dai C, Jia Y et al (2018) Biodegradation of phenanthrene by endophytic fungus Phomopsis liquidambari in vitro and in vivo. Chemosphere 203:160–169

    Article  CAS  Google Scholar 

  • García-Martínez MJ, Canoira L, Bl Azquez G, Da Riva I, Alc Antara R, Llamas JF et al (2005) Continuous photodegradation of naphthalene in water catalyzed by TiO2 supported on glass Raschig rings. Chem Eng J 110:123–128

    Article  Google Scholar 

  • Grover IS, Prajapat RC, Singh S, Pal B et al (2017) SiO2-coated pure anatase TiO2 catalysts for enhanced photooxidation of naphthalene and anthracene. Particuology 34:156–161

    Article  CAS  Google Scholar 

  • Gu J, Dong D, Kong L, Zheng Y, Li X et al (2012) Photocatalytic degradation of phenanthrene on soil surfaces in the presence of nanometer anatase TiO2 under UV-light. J Environ Sci 24(12):2122–2126

    Article  CAS  Google Scholar 

  • Guo Y, Xu G, Yang X, Ruan K, Ma T, Zhang Q, Guo Z (2018) Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J Mater Chem C 6(12):3004–3015

    Google Scholar 

  • Gupta H (2016) Photocatalytic degradation of phenanthrene in the presence of akaganeite nanorods and the identification of degradation products. RSC Adv 6:112721–112727

    Article  CAS  Google Scholar 

  • Gupta H, Gupta B (2015) Photocatalytic degradation of polycyclic aromatic hydrocarbon benzo[a]pyrene by iron oxides and identification of degradation products. Chemosphere 138:924–931

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Google Scholar 

  • Hassan SS, El Azab WI, Ali HR, Mansour MS et al (2015) Green synthesis and characterization of ZnO nanoparticles for photocatalytic degradation of anthracene. Adv Nat Sci Nanosci Nanotechnol 6(4):045012

    Article  Google Scholar 

  • IARC (1983) IARC Monographs on the evaluation of the carcinogenic risk of chemicals to humans. Vol. 30. Some Organochlorine Pesticides 30, pp. 87–101. IARC, Lyon

    Google Scholar 

  • Iqbal J, Overton EB, Gisclair D et al (2008) Polycyclic aromatic hydrocarbons in Louisiana rivers and coastal environments: source fingerprinting and forensic analysis. Environ Forensic 9:63–74

    Article  CAS  Google Scholar 

  • Ireland JC, Davila B, Moreno H, Fink SK, Tassos S et al (1995) Heterogeneous photocatalytic decomposition of polyaromatic hydrocarbons over titanium dioxide. Chemosphere 30:965–984

    Article  CAS  Google Scholar 

  • Jassal V, Shanker U, Kaith BS, Shankar S et al (2015) Green synthesis of potassium zinc hexacyanoferrate nanocubes and their potential application in photocatalytic degradation of organic dyes. RSC Adv 5:26141–26149

    Article  CAS  Google Scholar 

  • Jassal V, Shanker U, Gahlot S (2016) Green synthesis of some iron oxide nanoparticles and their interaction with 2-amino, 3-amino and 4-aminopyridines. Mater. Today Proceedings 3(6):1874–1882

    Google Scholar 

  • Kadri T, Rouissi T, Kaur Brar S, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci 51:52–74

    Google Scholar 

  • Kalf DF, Crommentuijn T, van de Plassche EJ (1997) Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs). Ecotoxicol Environ Saf 36:89–97

    Article  CAS  Google Scholar 

  • Kot-Wasik A, Da Browska D, Namiesnik J (2004) Photodegradation and biodegradation study of benzo(a)pyrene in different liquid media. J Photochem Photobiol A 168:109–115

    Google Scholar 

  • Kou J, Li Z, Guo Y, Gao J, Yang M, Zou Z (2010) Photocatalytic degradation of polycyclic aromatic hydrocarbons in GaN:ZnO solid solution-assisted process: direct hole oxidation mechanism. J Mol Catal Chem 325:48–54

    Google Scholar 

  • Kung H, Duan Y, Williams MG, Teplyakov AV (2016) Transmetalation Process as a Route for Preparation of Zinc-Oxide-Supported Copper Nanoparticles. Langmuir 32(28):7029–7037

    Google Scholar 

  • Lawal AT (2017) Polycyclic aromatic hydrocarbons. A review. Cogent Environ Sci 3:1339841

    Article  Google Scholar 

  • Li MH, Chen XM, Xu JP, Zhang XS, Wu YY, Li P, Niu XP, Luo CY, Li L et al (2012) Synthesis and photoluminescent properties of ZnO: Cu/ZnO core/shell nanocrystals. Optoelectron Lett 8(4):241–244

    Article  Google Scholar 

  • Li Z, Nie J, Lu Z, Xie H, Kang L, Chen Q,Yan Z (2016) Cumulative risk assessment of the exposure to pyrethroids through fruits consumption in China–Based on a 3-year investigation. Food Chem Toxicol 96:234–243

    Google Scholar 

  • Liao H, Fisher A, Xu ZJ (2015) Surface segregation in bimetallic nanoparticles: a critical issue in electrocatalyst engineering. Small 11(27):3221–3246

    Google Scholar 

  • Liu L, Kou JH, Guo DM, Yang J, Liu HL, Yu HX, Chu S, Jiang KR, Wang Y, Zou ZG et al (2009) Synthesis of thiol-functionalized TiO2 nanocomposite and photocatalytic degradation for PAH under visible light irradiation. Chin Chem Lett 20:1366e1370

    Article  Google Scholar 

  • Liu D, Wu Z, Tian F, Ye BC, Tong Y et al (2016) Synthesis of N and La co-doped TiO2/A.C. photocatalyst by microwave irradiation for the photocatalytic degradation of naphthalene. J Alloys Compd 676:489–498

    Article  CAS  Google Scholar 

  • Martinez-Vargas BL, Cruz-Ramirez M, Díaz-Real JA, Rodríguez-López JL, Bacame-Valenzuela FJ, Ortega-Borges R, Reyes-Vidal Y, Ortiz-Frade L et al (2019) Synthesis and characterization of n-ZnO/p-MnO nanocomposites for the photocatalytic degradation of anthracene. J Photochem Photobiol A 369:85–96

    Article  CAS  Google Scholar 

  • Moussawi RN, Patra D (2016) Nanoparticle self-assembled grain like curcumin conjugated ZnO: curcumin conjugation enhances removal of perylene, fluoranthene and chrysene by ZnO. Sci Rep 6(1):1–13

    Article  Google Scholar 

  • Mukwevho N, Fosso-Kankeu E, Waanders F, Kumar N, Ray SS, Yangkou Mbianda X et al (2018) Photocatalytic activity of Gd2O2CO3$ZnO$CuO nanocomposite used for the degradation of phenanthrene. SN Appl Sci 1:10

    Google Scholar 

  • Mukwevho N, Fosso-Kankeu E, Waanders F (2019) PAHs released from coal tars and potential removal using nanocatalysts. In: Nano and bio-based technologies for wastewater treatment: prediction and control tools for the dispersion of pollutants in the environment. pp 169–203, Wiley

    Google Scholar 

  • Mukwevho N, Gusain R, Fosso-Kankeu E, Kumar N, Waanders F, Ray SS (2020) Removal of naphthalene from simulated wastewater through adsorption photodegradation by ZnO/Ag/GO nanocomposite. J Ind Eng Chem 81:393–404

    Google Scholar 

  • Nguyen V-H, Smith SM, Wantala K, Kajitvichyanukul P (2020) Photocatalytic remediation of persistent organic pollutants (POPs): a review. Arab J Chem 13(1)1:8309–8337

    Google Scholar 

  • Rachna, Rani M, Shanker U (2018) Enhanced photocatalytic degradation of chrysene by Fe2O3@ ZnHCF nanocubes. Chem Eng J 348:754–764

    Google Scholar 

  • Rachna, Rani M, Shanker U (2019a) Degradation of tricyclic polyaromatic hydrocarbons in water, soil and river sediment with a novel TiO2 based heterogeneous nanocomposite. J Environ Manag 248:109340

    Google Scholar 

  • Rachna, Rani M, Shanker U (2019b) Sunlight mediated improved photocatalytic degradation of carcinogenic benz[a]anthracene and benzo[a]pyrene by zinc oxide encapsulated hexacyanoferrate nanocomposite. J Photochem Photobiol A 381:111861

    Google Scholar 

  • Rachna, Rani M, Shanker U (2020). Sunlight assisted degradation of toxic phenols by zinc oxide doped prussian blue nanocomposite. J Environ Chem Eng 8(4):104040

    Google Scholar 

  • Rani M, Shanker U, Jassal V (2017) Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review. J Environ Manage 190:208–222

    Google Scholar 

  • Rani M, Rachna, Shanker U (2018a) Metal hexacyanoferrates nanoparticles mediated degradation of carcinogenic aromatic amines. Environ Nanotechnol Monit Manage 10:36e50

    Google Scholar 

  • Rani M, Shanker U (2018b) Insight in to the degradation of bisphenol A by doped ZnO@ ZnHCF nanocubes: high photocatalytic performance. J Colloid Interface Sci 530:16–28

    Google Scholar 

  • Rani M, Shanker U (2018c) Metal hexacyanoferrates nanoparticles mediated degradation of carcinogenic aromatic amines. Environ Nanotechnol Monit Manag 10:36–50

    CAS  Google Scholar 

  • Rani M, Shanker U (2018d) Promoting sun light-induced photocatalytic degradation of toxic phenols by efficient and stable double metal cyanide nanocubes. Environ Sci Pollut Res 25(24):23764–23779

    Google Scholar 

  • Rani M, Shanker U (2018e) Sun-light driven rapid photocatalytic degradation of methylene blue by poly (methyl methacrylate)/metal oxide nanocomposites, Colloids Surf. A Physicochem Eng 559:136–147

    Google Scholar 

  • Rani M, Rachna, Shanker U (2019) Mineralization of carcinogenic anthracene and phenanthrene by sunlight active bimetallic oxides nanocomposites. J Colloid Interface Sci 555:676–688

    Google Scholar 

  • Rani M, Shanker U (2020) Green synthesis of TiO2 and its photocatalytic activity. In Handbook of Smart Photocatalytic Materials (pp. 11–61). Elsevier

    Google Scholar 

  • Rani M, Shanker U (2021) Insight in to sunlight-driven rapid photocatalytic degradation of organic dyes by hexacyanoferrate-based nanoparticles. Environ Sci Pollut Res 28(5):5637–5650

    Google Scholar 

  • Rivas FJ (2006) Polycyclic aromatic hydrocarbons sorbed on soils: a short review of chemical oxidation-based treatments. J Hazard Mater 138:234e251

    Article  Google Scholar 

  • Sakshi, Singh SK, Haritash AK et al (2019) Polycyclic aromatic hydrocarbons: soil pollution and remediation. Int J Environ Sci Technol 16:6489–6512

    Article  CAS  Google Scholar 

  • Shanker U, Jassal V, Rani M (2016) Catalytic removal of organic colorants from water using some transition metal oxide nanoparticles synthesized under sunlight. RSC advances 6(97):94989–94999

    Google Scholar 

  • Shanker U, Jassal V, Rani M et al (2017a) Degradation of toxic PAHs in water and soil using potassium zinc hexacyanoferrate nanocubes. J Environ Manag 204:337–348

    Article  CAS  Google Scholar 

  • Shanker U, Jassal V, Rani M et al (2017b) Green synthesis of iron hexacyanoferrate nanoparticles: potential candidate for the degradation of toxic PAHs. J Environ Chem Eng 5:4108e4120

    Article  Google Scholar 

  • Shanker U, Hussai CM, Rani M (2021) Green functionalized nanomaterials for environmental applications. Elsevier

    Google Scholar 

  • Sharma A, Lee BK (2015) Adsorptive/photocatalytic process for naphthalene removal from aqueous media using in-situ nickel doped titanium nanocomposite. J Environ Manag 155:114–122

    Article  CAS  Google Scholar 

  • Soni H, Kumar N, Patel K, Kumar RN et al (2020) Investigation on the heterogeneous photocatalytic remediation of pyrene and phenanthrene in solutions using nanometer TiO2 under UV irradiation. Polycycl Aromat Comp 40:257e267

    Article  Google Scholar 

  • Theerakarunwong CD, Phanichphant S (2018) Visible-light-induced photocatalytic degradation of PAH-contaminated soil and their pathways by Fe-doped TiO 2 nanocatalyst. Water Air Soil Pollut 229(9):1–11

    Article  Google Scholar 

  • Tunçal T, Uslu O (2015) Industrial sludge remediation with photonic treatment using TieAg nanocomposite thin films: persistent organic pollutant removal from sludge matrix. J Environ Manag 149:37e45

    Article  Google Scholar 

  • Tuncel SG, Topal T (2015) Polycyclic aromatic hydrocarbons (PAHs) in sea sediments of the Turkish Mediterranean coast, composition and sources. Environ Sci Pollut Res 22(6):4213–4221

    Google Scholar 

  • Vanneck P, Beeckman M, De Saeyer N, Verstraete W, De Haene S et al (1995) Biodegradation of polycyclic aromatic hydrocarbons in a two-liquid-phase system (No. CONF-950483-). Battelle Press, Columbus

    Google Scholar 

  • Varjani SJ, Joshi RR, Kumar PS, Srivastava VK, Banerjee C, Kumar RP (2018) Polycyclic aromatic hydrocarbons from petroleum oil industry activities: effect on human health and their biodegradation. In: Varjani S, Gnansounou E, Gurunathan B, Pant D, Zakaria Z (eds) Waste bioremediation.Environ. Prog. Sustain.. pp. 185–189, Springer, Singapore.

    Google Scholar 

  • Vela N, Martínez-Menchón M, Navarro G, Pérez-Lucas G, Navarro S (2012) Removal of polycyclic aromatic hydrocarbons (PAHs) from groundwater by heterogeneous photocatalysis under natural sunlight. J Photochem Photobiol A: Chemistry 232:32–40

    Google Scholar 

  • Wang Z, Yan W, Chi J, Zhang G (2008) Spatial and vertical distribution of organochlorine pesticides in sediments from Daya Bay, South China. Mar Pollut Bull 56(9):1578–1585

    Google Scholar 

  • Wang Y, Liu CS, Li FB, Liu CP, Liang JB et al (2009) Photodegradation of polycyclic aromatic hydrocarbon pyrene by iron oxide in solid phase. J Hazard Mater 162:716–723

    Article  CAS  Google Scholar 

  • Wang C, Yu D, Shi W, Jiao K, Wu B, Xu H et al (2016) Application of spent mushroom (Lentinula edodes) substrate and acclimated sewage sludge on the bioremediation of polycyclic aromatic hydrocarbon polluted soil. RSC Adv 6:37274–37285

    Article  CAS  Google Scholar 

  • Wen S, Zhao J, Sheng G, Fu J, an Peng P et al (2002) Photocatalytic reactions of phenanthrene at TiO2/water interfaces. Chemosphere 46:871e877

    Article  Google Scholar 

  • Xia X, Xia N, Lai Y, Dong J, Zhao P, Zhu B, Li Z, Ye W, Yuan Y, Huang J et al (2015) Response of PAH-degrading genes to PAH bioavailability in the overlying water, suspended sediment, and deposited sediment of the Yangtze River. Chemosphere 128:236–244

    Article  CAS  Google Scholar 

  • Xue Y-N, Zhang J-Y, Tang S, Liu J-K, Yue Y-B, Yang X-H et al (2018) Rapid degradation of unmanageable polycyclic aromatic hydrocarbons by a C-ZnO solid solution nanocatalyst. New J Chem 42:4308e4316

    Article  Google Scholar 

  • Yan C, Wang T (2017) A new view for nanoparticle assemblies: from crystalline to binary cooperative complementarity. Chem Soc Rev 46(5):1483–1509

    Google Scholar 

  • Yan Z, He Y, Cai H, Van Nostrand JD, He Z, Zhou J, Krumholz LR, Jiang HL et al (2017) Interconnection of key microbial functional genes for enhanced benzo [a] pyrene biodegradation in sediments by microbial electrochemistry. Environ Sci Technol 51(15):8519–8529

    Article  CAS  Google Scholar 

  • Yang T, Zhao YL, Tong Y, Jiao ZB, Wei J, Cai JX, Liu CT (2018) Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Sci 362(6417):933–937

    Google Scholar 

  • Yi Z, Ye J, Kikugawa N, Kako T, Ouyang S, Stuart-Williams H, Yang H, Cao J, Luo W, Li Z, Liu Y, Withers RL et al (2010) An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat Mater 9:559e564

    Article  Google Scholar 

  • Zhang L, Li P, Gong Z, Li X (2008) Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light. J Hazard Mater 158(2–3), 478–484

    Google Scholar 

  • Zhang X F, Liu ZG, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):1534

    Google Scholar 

  • Zhao X, Cai Z, Wang T, O’Reilly SE, Liu W, Zhao D et al (2016) A new type of cobalt-deposited titanate nanotubes for enhanced photocatalytic degradation of phenanthrene. Appl Catal B Environ 187:134–143

    Article  CAS  Google Scholar 

  • Zhong Y, Li B, Li S, Xu S, Pan Z, Huang Q, Li, W (2018) Bi nanoparticles anchored in N-doped porous carbon as anode of high energy density lithium ion battery. Nanomicro Lett 10(4):1–14

    Google Scholar 

  • Zhuo Q, Deng S, Yang B, Huang J, Yu G et al (2011) Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode. Environ Sci Technol 45:2973–2979

    Article  CAS  Google Scholar 

Download references

Acknowledgment

One author, Dr. Manviri Rani, is grateful for the financial assistance from DST-SERB, New Delhi (Sanction order no. SRG/2019/000114), India. The authors are also thankful to TEQIP-phase -III NIT Jalandhar for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Shanker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rani, M., Shanker, U. (2023). Abatement of PAHs by Engineered Nanomaterials. In: Shanker, U., Hussain, C.M., Rani, M. (eds) Handbook of Green and Sustainable Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-031-16101-8_50

Download citation

Publish with us

Policies and ethics