Skip to main content

Innovative Technology to Combat Sars-Cov Using a Finely Dispersed Catching Medium and Microwave Energy

  • Conference paper
  • First Online:
International Conference on Reliable Systems Engineering (ICoRSE) - 2022 (ICoRSE 2022)

Abstract

Due to the current acute problem of combating the SARS-CoV coronavirus, our team has proposed an innovative technology to combat the virus in closed or ventilated rooms. The developed design of ventilation equipment ensures the inactivation of coronavirus by thermal exposure of sufficient duration. The virus is destroyed outside the human body, so sterilization is preventive. Capturing the virus from the airflow and its retention with subsequent disinfection occurs using a finely dispersed catching medium, using the effect of coagulation of the medium vapors, its coalescence, and intense heating. The use of highly efficient heating technology using microwave energy allows sterilizing the virus with minimal energy consumption. Unlike virus disinfection technologies developed in the world using ultraviolet radiation, the technology we offer involves a long-term deactivating thermal effect on the virus, which ensures a high degree of disinfection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gerchman, Y., Mamane, H., Friedman, N., Mandelboim, M.: UV-LED disinfection of coronavirus: wavelength effect. J. Photochem. Photobiol. B Biol. 212, 112044 (2020). ISSN 1011-1344, https://doi.org/10.1016/j.jphotobiol.2020.112044

  2. Wierzbicki, T., Li, W., Liu, Y., Zhu, J.: Effect of receptors on the resonant and transient harmonic vibrations of Coronavirus. J. Mech. Phys. Solids. 150, 104369 (2021). https://doi.org/10.1016/j.jmps.2021.104369. Epub 2021 Feb 18. PMID: 33623172; PMCID: PMC7890278

  3. Balandin, A., Fonoberov, V.: Vibrational modes of nano-template viruses. J. Biomed. Nanotechnol. 1, 90–95 (2005). https://doi.org/10.1166/jbn.2005.005

    Article  Google Scholar 

  4. Yang, S.C., et al.: Efficient structure resonance energy transfer from microwaves to confined acoustic vibrations in viruses. Sci. Rep. 9(5), 18030 (2015). https://doi.org/10.1038/srep18030.PMID:26647655;PMCID:PMC4673452

  5. Liu, T.-M., et al.: Microwave resonant absorption of viruses through dipolar coupling with confined acoustic vibrations. Appl. Phys. Lett. 94, 043902 (2009). https://doi.org/10.1063/1.3074371

    Article  Google Scholar 

  6. Jiang, Y., et al.: Sub-second heat inactivation of coronavirus using a betacoronavirusmodel. Biotechnol. Bioeng. 118, 2067–2075 (2021). https://doi.org/10.1002/bit.27720

    Article  Google Scholar 

  7. Dobrotvorskiy, S., Dobrovolska, L., Basova, Y., Aleksenko, B.: Diagnostics of uneven heating of the adsorbent by microwave radiation and measures to increase the uniformity of its heating. Periodica Polytech. Chem. Eng. 63(4), 640–649 (2019). https://doi.org/10.3311/PPch.13234

    Article  Google Scholar 

  8. Dobrotvorskiy, S.S., Dobrovolska, L.G., Aleksenko, B.A.: Computer simulation of the process of regenerating the adsorbent using microwave radiation in compressed air dryers. In: Hamrol, A., Ciszak, O., Legutko, S., Jurczyk, M. (eds.) Advances in Manufacturing. LNME, pp. 511–519. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68619-6_49

    Chapter  Google Scholar 

  9. Dobrotvorskiy, S., Dobrovolska, L., Aleksenko, B., Basova, Y.: The use of waveguides with internal dissectors in the process of regeneration of industrial adsorbents by means of the energy of ultrahigh-frequency radiation. In: Ivanov, V., et al. (eds.) DSMIE 2018. LNME, pp. 433–442. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93587-4_45

  10. Dobrotvorskiy, S., Aleksenko, B., Dobrovolska, L., Basova, Y.: Effect of the application of microwave energy on the regeneration of the adsorbent. Acta Polytechnica 58(4), 217–225 (2018). https://doi.org/10.14311/AP.2018.58.0217

  11. Dobrotvorskiy, S., Dobrovolska, L., Basova, Y., Aleksenko, B.: Particulars of adsorbent regeneration with the use of microwave energy. Acta Polytechnica 59(1), 12–23 (2019). https://doi.org/10.14311/AP.2019.59.0012

  12. Kakita, Y., Kashige, N., Murata, K., Kuroiwa, A., Funatsu, M., Watanabe, K.: Inactivation of Lactobacillus bacteriophage PL-1 by microwave irradiation. Microbiol. Immunol. 39(8), 571–576 (1995). https://doi.org/10.1111/j.1348-0421.1995.tb02244.x. PMID: 7494495

    Article  Google Scholar 

  13. Barbora, A., Minnes, R.: Targeted antiviral treatment using non-ionizing radiation therapy for SARS-CoV-2 and viral pandemics preparedness: technique, methods and practical notes for clinical application. PLoS ONE 16(5), e0251780 (2021). https://doi.org/10.1371/journal.pone.0251780

    Article  Google Scholar 

  14. Wang, A., Cheng, N., Liou, Y., Lin, K.: Inactivation of bacteriophage by microwave irradiation. J. Exp. Microbiol. Immunol. 1, 9–18 (2001). Corpus ID: 53380108

    Google Scholar 

  15. Dobrotvorskiy, S., Borys, A., Yepifanov, V., Basova, Y., Dobrovolska, L., Popov, V.: The absorbents nanoporous structures regeneration for industrial dryers by microwave energy. In: Cioboată, D.D. (ed.) ICoRSE 2021. LNNS, vol. 305, pp. 8–22. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-83368-8_2

    Chapter  Google Scholar 

  16. RF Module User’s Guide. COMSOL© (2018). https://doc.comsol.com/5.4/doc/com.comsol.help.rf/RFModuleUsersGuide.pdf. Accessed 29 Feb 2018

  17. COMSOL User’s Guide. COMSOL© (2018). https://extras.csc.fi/math/comsol/3.4/doc/multiphysics/wwhelp/wwhimpl/js/html/wwhelp.htm?context=multiphysics&file=html_guideintro.5.1.htm. Accessed 22 Aug 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevheniia Basova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aleksenko, B.A., Dobrotvorskiy, S., Basova, Y., Sokol, Y., Edl, M., Dobrovolska, L. (2023). Innovative Technology to Combat Sars-Cov Using a Finely Dispersed Catching Medium and Microwave Energy. In: Cioboată, D.D. (eds) International Conference on Reliable Systems Engineering (ICoRSE) - 2022. ICoRSE 2022. Lecture Notes in Networks and Systems, vol 534. Springer, Cham. https://doi.org/10.1007/978-3-031-15944-2_19

Download citation

Publish with us

Policies and ethics