Skip to main content

Discrete Element Modelling of Masonry Arch Bridges, Arches and Vaults

  • Chapter
  • First Online:
From Corbel Arches to Double Curvature Vaults

Part of the book series: Research for Development ((REDE))

Abstract

Discrete element models provide a numerical representation of masonry structures as an assembly of discrete units interacting along joints. The essential concepts of this numerical method are presented herein, namely the choice of rigid or deformable blocks for the units, the assumptions governing contact mechanics, and the solution algorithms. The application of discrete element to masonry arches and vaults is discussed and illustrated with various examples. Practical application issues are examined by means of simple arch models, considering static and dynamic loads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amadei B, Mirabella Roberti G, Binda L (1995) Modeling the stability of masonry structures with the discontinuous deformation analysis. In: Middleton J, Pande GN (eds) Computer methods in structural masonry—3. Books and Journals International, pp 1–11

    Google Scholar 

  • Belytschko T (1983) An overview of semidiscretization and time integration procedures. In: Belytschko T, Hughes TJR (eds) Computational methods for transient analysis. North Holland, pp 1–65

    Google Scholar 

  • Cannizzaro F, Pantò B, Caddemi S, Caliò I (2018) A discrete macro-element method (DMEM) for the nonlinear structural assessment of masonry arches. Eng Struct 168:243–256. https://doi.org/10.1016/j.engstruct.2018.04.006

    Article  Google Scholar 

  • Cavicchi A, Gambarotta L (2007) Lower bound limit analysis of masonry bridges including arch-fill interaction. Eng Struct. https://doi.org/10.1016/j.engstruct.2007.01.028

    Article  Google Scholar 

  • Chen S, Bagi K (2020) Crosswise tensile resistance of masonry patterns due to contact friction. Proc R Soc A 476:20200439. https://doi.org/10.1098/rspa.2020.0439

    Article  Google Scholar 

  • Choo BS, Gong NG (1995) Effect of skew on the strength of masonry arch bridges. Arch Bridges 1995:205–214

    Article  Google Scholar 

  • Cismaşiu C, Silva PBS, Lemos JV, Cismaşiu I (2021) Seismic vulnerability assessment of a stone arch using discrete elements. Int J Architectural Heritage. https://doi.org/10.1080/15583058.2021.1963506

    Article  Google Scholar 

  • Cundall PA (1971) A computer model for simulating progressive, large-scale movements in blocky rock systems. Proc Int Symp on Rock Fracture. 1971:11–18

    Google Scholar 

  • Cundall PA (1988) Formulation of a three-dimensional distinct element model—part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts: Pergamon, pp 107–116

    Google Scholar 

  • D’Altri AM, Sarhosis V, Milani G, Rots J, Cattari S, Lagomarsino S, Sacco E, Tralli A, Castellazzi G, De Miranda S (2020) Modeling strategies for the computational analysis of unreinforced masonry structures: review and classification. Archives Computational Methods in Engineering 27:1153–1185. https://doi.org/10.1007/s11831-019-09351-x

    Article  Google Scholar 

  • De Lorenzis L, DeJong MJ, Ochsendorf J (2007) Failure of masonry arches under impulse base motion. Earthquake Eng Struct Dynam 36(14):2119–2136. https://doi.org/10.1002/eqe.719

    Article  Google Scholar 

  • De Santis S, Roscini F, de Felice G (2018) Full-scale tests on masonry vaults strengthened with steel reinforced grout. Compos Part B Eng 141:20–36. https://doi.org/10.1016/j.compositesb.2017.12.023

    Article  Google Scholar 

  • DeJong M, De Lorenzis L, Ochsendorf JA (2007) Numerical modeling of masonry arch stability under impulse base motion. In: Papadrakakis M, Charmpis DC, Lagaros ND, Tsompanakis Y (eds) Compdyn-2007. Rethymno, Crete, Greece

    Google Scholar 

  • Detournay C, Dzik E (2006) Nodal mixed discretization for tetrahedral elements. In: 4th international FLAC symposium on numerical modelling in geomechanics, Itasca Consulting Group, Minneapolis, MN, Itasca Consulting Group, Inc.

    Google Scholar 

  • Dimitri R, Tornabene F (2015) A parametric investigation of the seismic capacity for masonry arches and portals of different shapes. Eng Fail Anal 52:1–34. https://doi.org/10.1016/j.engfailanal.2015.02.021

    Article  Google Scholar 

  • Dimitri R, De Lorenzis L, Zavarise G (2011) Numerical study on the dynamic behavior of masonry columns and arches on buttresses with the discrete element method. Eng Struct 33:3172–3188. https://doi.org/10.1016/j.engstruct.2011.08.018

    Article  Google Scholar 

  • Drosopoulos G, Stavroulakis G, Massalas C (2006) Limit analysis of a single span masonry bridge with unilateral frictional contact interfaces. Eng Struct 28:1864–1873

    Article  Google Scholar 

  • Fanning PJ, Boothby TE (2001) Three-dimensional modelling and full-scale testing of stone arch bridges. Comput Struct 79:2645–2662

    Article  Google Scholar 

  • Ford T, Augarde C, Tuxford S (2003) Modelling masonry arch bridges using commercial finite element software. In: 9th international conference on civil and structural engineering computing. Egmond aan Zee, The Netherlands, pp 2–4

    Google Scholar 

  • Forgács T, Sarhosis V, Bagi K (2017) Minimum thickness of semi-circular skewed masonry arches. Eng Struct 140:317–336

    Article  Google Scholar 

  • Forgacs T, Sarhosis V, Bagi K (2018) Influence of construction method on the load bearing capacity of skew masonry arches. Eng Struct 168:612–627

    Article  Google Scholar 

  • Forgacs T, Sarhosis V, Adany S (2021) Shakedown and dynamic behaviour of masonry arch railway bridges. Eng Struct 228:111474. https://doi.org/10.1016/j.engstruct.2020.111474

    Article  Google Scholar 

  • Foti D, Vacca V, Facchini I (2018) DEM modeling and experimental analysis of the static behavior of a dry-joints masonry cross vaults. Constr Build Mater 170:111–120. https://doi.org/10.1016/j.conbuildmat.2018.02.202

    Article  Google Scholar 

  • Gago A, Alfaiate J, Gallardo A (2002) Numerical analyses of the Bargower arch bridge. In: Finite elements in civil engineering applications. Swets & Zeitlinger, Lisse (Tokyo)

    Google Scholar 

  • Gay C (1924) Ponts en maçonnerie: Librairie J.-B. Baillière et Fils

    Google Scholar 

  • Giamundo V, Sarhosis V, Lignola GP, Sheng Y, Manfredi G (2014) Evaluation of different computational modelling strategies for the analysis of low strength masonry structures. Eng Struct 73:160–169

    Article  Google Scholar 

  • Gobbin F, De Felice G, Lemos JV (2020) A discrete element model for masonry vaults strengthened with externally bonded reinforcement. Int J Architectural Heritage. https://doi.org/10.1080/15583058.2020.1743792

    Article  Google Scholar 

  • Grillanda N, Milani G (2021) Seismic vulnerability of masonry historical structures: a simple adaptive NURBS FE approach for the limit and the subsequent non-linear static analysis with few DOFs. Papadrakakis M, Fragiadakis M (eds) COMPDYN 2021, Athens, Greece

    Google Scholar 

  • Heyman J (1966) The stone skeleton. Int J Solids Struct 2:249–279

    Article  Google Scholar 

  • Iannuzzo A, Olivieri C, Fortunato A (2019) Displacement capacity of masonry structures under horizontal actions via PRD method. J Mech Mater Struct 14:703–718. https://doi.org/10.2140/jomms.2019.14.703

    Article  MathSciNet  Google Scholar 

  • Itasca (2014) UDEC—universal distinct element code. Itasca Consulting Group, Minneapolis, MN

    Google Scholar 

  • Itasca (2020) 3DEC—three-dimensional distinct element code. Itasca Consulting Group, Minneapolis, MN

    Google Scholar 

  • Jensen JS, Casas JR, Karoumi R, Plos M, Cremona C, Melbourne C (2008) Guideline for load and resistance assessment of existing European railway bridges. In: Fourth international conference on bridge maintenance, safety and management (IABMAS 08), France, pp 3658–3665

    Google Scholar 

  • Kassotakis N, Sarhosis V, Forgács T, Bagi K (2017) Discrete element modelling of multi-ring brickwork masonry arches. In: 13th Canadian masonry symposium. Canada Masonry Design Centre, Halifax, Canada

    Google Scholar 

  • Lemos JV (1995) Assessment of the ultimate load of a masonry arch using discrete elements. In: Middleton J, Pande GN (eds) Computer methods in structural masonry—3, Books and Journals International 294–302

    Google Scholar 

  • Lemos JV (1998) Discrete element modelling of the seismic behaviour of stone masonry arches. In: Middleton J, Pande GN, Kralj B (eds) Computer methods in structural masonry—4, E&FN Spon, London, pp 220–227

    Google Scholar 

  • Lemos JV (2007) Discrete element modeling of masonry structures. International Journal of Architectural Heritage 1:190–213

    Article  Google Scholar 

  • Lemos JV (2017) Contact representation in rigid block models of masonry. Int J Masonry Research and Innovation 2(4):321–334. https://doi.org/10.1504/IJMRI.2017.087445

    Article  Google Scholar 

  • Lengyel G, Bagi K (2015) Numerical analysis of the mechanical role of the ribs in groin vaults. Comput Struct 158:42–60

    Article  Google Scholar 

  • Malena M (2018) Closed-form solution to the debonding of mortar based composites on curved substrates. Compos Part B Eng. https://doi.org/10.1016/j.compositesb.2017.11.044

    Article  Google Scholar 

  • Masi F, Stefanou I, Maffi-Berthier V, Vannucci P (2020) A discrete element method based-approach for arched masonry structures under blast loads. Eng Struct 216:110721. https://doi.org/10.1016/j.engstruct.2020.110721

    Article  Google Scholar 

  • McInerney J, DeJong MJ (2015) Discrete element modelling of groin vault displacement capacity. International Journal of Architectural Heritage 9(8):1037–1049. https://doi.org/10.1080/15583058.2014.923953

    Article  Google Scholar 

  • Mirabella R, Calvetti E (1998) Distinct element analysis of stone arches. In: Sinopoli (ed) Arch bridges; Proceedings of international symposium, Paris, pp 6–9

    Google Scholar 

  • Misseri G, DeJong M, Rovero L (2018) Experimental and numerical investigation of the collapse of pointed masonry arches under quasi-static horizontal loading. Eng Struct 173:180–190. https://doi.org/10.1016/j.engstruct.2018.06.009

    Article  Google Scholar 

  • Page J (1993) State-of-the-art-review: masonry arch bridges. Transport Research Laboratory, Department of Transport, Her Majesty’s Stationery Office, London, England, UK

    Google Scholar 

  • Pagnoni T, Vanzi I (1995) Experimental and numerical study of the seismic re-sponse of block structures. In: Middleton J, Pande GN (eds) Computer methods in structural masonry—3. Books & Journals International, Swansea, pp 213–222

    Google Scholar 

  • Paris V, Pizzigoni A, Adriaenssens S (2020) Statics of self-balancing masonry domes constructed with a cross-herringbone spiraling pattern. Eng Struct 215:110440. https://doi.org/10.1016/j.engstruct.2020.110440

    Article  Google Scholar 

  • Pulatsu B, Erdogmus E, Lourenço PB (2019) Comparison of in-plane and out-of-plane failure modes of masonry arch bridges using discontinuum analysis. Eng Struct 178:24–36. https://doi.org/10.1016/j.engstruct.2018.10.016

    Article  Google Scholar 

  • Romano A, Ochsendorf JA (2010) The mechanics of gothic masonry arches. International Journal of Architectural Heritage 4:59–82. https://doi.org/10.1080/15583050902914660

    Article  Google Scholar 

  • Sarhosis V, Sheng Y (2014) Identification of material parameters for low bond strength masonry. Eng Struct 60:100–110

    Article  Google Scholar 

  • Sarhosis V, Garrity S, Sheng Y (2012) A computational modelling approach for low bond strength masonry

    Google Scholar 

  • Sarhosis V, Oliveira DV, Lemos JV, Lourenco PB (2014) The effect of skew angle on the mechanical behaviour of masonry arches. Mech Res Commun 61:53–59. https://doi.org/10.1016/j.mechrescom.2014.07.008

    Article  Google Scholar 

  • Sarhosis V, Garrity SW, Sheng Y (2015) Influence of brick-mortar interface on the mechanical behaviour of low bond strength masonry brickwork lintels. Eng Struct 88:1–11

    Article  Google Scholar 

  • Sarhosis V, De Santis S, de Felice G (2016) A review of experimental investigations and assessment methods for masonry arch bridges. Struct Infrastruct Eng 12:1439–1464

    Google Scholar 

  • Sarhosis V, Forgacs T, Lemos JV (2019) A discrete approach for modelling backfill material in masonry arch bridges. Comput Struct 224:106108

    Article  Google Scholar 

  • Saygili O, Lemos JV (2021) Seismic vulnerability assessment of masonry arch bridges. Structures 33:3311–3323. https://doi.org/10.1016/j.istruc.2021.06.057

    Article  Google Scholar 

  • Scacco J, Salazar G, Bianchini N, Mendes N, Cullimore C, Jain L (2019) Seismic assessment of the church of Carmo convent, in Congresso de Métodos Numéricos em Engenharia, 2019. Portugal, Universidade do Minho, Guimarães

    Google Scholar 

  • Simon J, Bagi K (2016) Discrete element analysis analysis of the minimum thickness of oval masonry domes. Int J Architectural Heritage 10(4):457–475

    Article  Google Scholar 

  • State of the Nation 2018 (2018) Infrastructure investment. In: IoCE (ed) ICE. Institution of Civil Engineers (ICE), UK, p 31

    Google Scholar 

  • Toth AR, Orban Z, Bagi K (2009) Discrete element analysis of a stone masonry arch. Mech Res Commun 36:469–480

    Article  MATH  Google Scholar 

  • UIC (1994) Code UIC 776–1R—Charges à Prendre en Considération Dans le Calcul des Ponts-Rails, 4e edition

    Google Scholar 

  • Zhang YY, Macorini L, Izzuddin BA (2018) Numerical investigation of arches in brick-masonry bridges. Struct Infrastruct Eng 14:14–32

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José V. Lemos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lemos, J.V., Gobbin, F., Forgács, T., Sarhosis, V. (2022). Discrete Element Modelling of Masonry Arch Bridges, Arches and Vaults. In: Milani, G., Sarhosis, V. (eds) From Corbel Arches to Double Curvature Vaults. Research for Development. Springer, Cham. https://doi.org/10.1007/978-3-031-12873-8_9

Download citation

Publish with us

Policies and ethics