Skip to main content

Biowaste Materials for Advanced Biodegradable Packaging Technology

  • Reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

Biowaste is a type of solid waste (SW) causing a great environmental concern through the continuously growing human population and urbanization. In addition, the common usage of non-biodegradable materials such as plastics for various applications such as food packaging entails high health and environmental risks. Resulting issues include the landfilling of non-biodegradable waste (i.e., food packaging processes), the ecosystem problems due to the merging of these materials with marine environments, and the hazardous by-products of their waste treatment (and even their production and transportation) such as greenhouse gases (GHSs), microplastics, and other chemicals are causing endurable environmental and health problems. Food packaging is one of the big markets for plastics and other non-biodegradable materials. The production of biodegradable materials is an absolute requirement both in environmental and economic terms. Biowaste (i.e., chitosan, cellulose, starch, and so on) acts as a big source of biodegradable material production that can be used for various applications such as food packaging. Besides, various biopolymers can be modified/extracted from biowaste sources and used in food packaging. Converting the biowaste into useful and eco-friendly products such as biodegradable packaging materials converts this waste into wealth. Additionally, enhancement, development, and functionalization of biodegradable packaging materials to sustain advantages such as antimicrobial, elasticizing, thermal, and barrier characteristics advance their use and sustainability. Future progress and further establishment of these technologies through nanotechnology will significantly alleviate environmental and economic concerns, and turn the global into the great goal of zero emission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AA:

Anacardic acid

A. Niger:

Aspergillus niger

AD:

Anaerobic digestion

AgNPs:

Silver nanoparticles

B. Cereus:

Bacillus cereus

B. lactofermentum:

Brevibacterium lactofermentum

bio-PE:

Polyol-polyurethane bio-polyethylene

bio-PET:

Bio-poly (ethylene terephthalate)

C. Albicans:

Candida albicans

C. Glutamicum:

Corynebacterium glutamicum

CS:

Chitosan

EMAP:

Equilibrium modified atmosphere packaging

GHGs:

Greenhouse gases

P. Aeruginosa:

Pseudomonas aeruginosa

PBA/T:

Poly (butylene adipate-co-terephthalate)

PBS/A:

Poly (butylene succinate/adipate)

PCL:

Poly(e-caprolactone)

PE:

Polyethylene

PET:

Poly (ethylene terephthalate)

PGA:

Poly glycolic acid

PHA:

Polyhydroxy alkanoate

PHB:

3-hydroxybutyrate

PHBV:

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

PLA:

Ploy (lactic acid)

PP:

Polypropylene

PS:

Polystyrene

S. Aureus:

Staphylococcus Aureus

S. Typhimurium:

Salmonella Typhimurium

SW:

Solid waste

VOCs:

Volatile organic compounds

ZnO NPs:

ZnO nanoparticles

References

  1. Karak T, Bhagat RM, and Bhattacharyya P (2013) Municipal Solid Waste Generation, Composition, and Management: The World Scenario. Critical Reviews in Environmental Science and Technology 43(2):215–215

    Article  CAS  Google Scholar 

  2. Freinkel S, Plastic: a toxic love story. 2011: Text Publishing.

    Google Scholar 

  3. Hosseini SF and Gómez-Guillén MC (2018) A state-of-the-art review on the elaboration of fish gelatin as bioactive packaging: Special emphasis on nanotechnology-based approaches. Trends in Food Science & Technology 79:125–135

    Article  CAS  Google Scholar 

  4. Hammond GP and Jones CI (2008) Embodied energy and carbon in construction materials. Proceedings of the Institution of Civil Engineers-Energy 161(2):87–98

    Article  Google Scholar 

  5. Federation BP, Oil consumption. 2008, British Plastics Federation London.

    Google Scholar 

  6. Agenda I. The New Plastics Economy Rethinking the future of plastics. in World Economic Forum. 2016.

    Google Scholar 

  7. Varžinskas V and Markevičiūtė Z (2020) Sustainable food packaging: materials and waste management solutions. Environmental Research, Engineering and Management 76(3):154–164

    Article  Google Scholar 

  8. Guillard V, Gaucel S, Fornaciari C, Angellier-Coussy H, Buche P, and Gontard N (2018) The next generation of sustainable food packaging to preserve our environment in a circular economy context. Frontiers in nutrition:121

    Google Scholar 

  9. Lebreton L and Andrady A (2019) Future scenarios of global plastic waste generation and disposal. Palgrave Communications 5(1):6

    Article  Google Scholar 

  10. Tokiwa Y and Pranamuda H, Microbial Degradation of Aliphatic Polyesters, Biopolymers; Steinbchel, A., Doi, Y., Eds. 2002, Wiley-VCH: Weinheim, Germany.

    Google Scholar 

  11. Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angewandte Chemie International Edition 54(11):3210–3215

    Article  CAS  Google Scholar 

  12. Piergiovanni L and Limbo S, Food packaging materials. 2016: Springer.

    Google Scholar 

  13. Rivera XCS, Leadley C, Potter L, and Azapagic A (2019) Aiding the design of innovative and sustainable food packaging: Integrating techno-environmental and circular economy criteria. Energy Procedia 161:190–197

    Article  Google Scholar 

  14. Azoulay D, Villa P, Arellano Y, Gordon MF, Moon D, Miller KA, and Thompson K, Plastic & health: the hidden costs of a plastic planet. 2019: CIEL Geneva.

    Google Scholar 

  15. Ghayour-Kelly Z (2019) Plastic Packaging and the Associated Environmental Challenges. A case for a California Plastic Packaging Framework.

    Google Scholar 

  16. Hahladakis JN, Velis CA, Weber R, Iacovidou E, and Purnell P (2018) An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of hazardous materials 344:179–199

    Article  CAS  Google Scholar 

  17. Shenashen MA, Emran MY, El Sabagh A, Selim MM, Elmarakbi A, and El-Safty SA (2022) Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. Progress in Materials Science 124:100866

    Article  CAS  Google Scholar 

  18. Krupp LR and Jewell WJ (1992) Biodegradability of modified plastic films in controlled biological environments. Environmental Science & Technology 26(1):193–198

    Article  CAS  Google Scholar 

  19. Pavlas M, Dvořáček J, Pitschke T, and Peche R (2020) Biowaste Treatment and Waste-To-Energy—Environmental Benefits. Energies 13:1994

    Article  CAS  Google Scholar 

  20. Ubando AT, Del Rosario AJR, Chen W-H, and Culaba AB (2021) A state-of-the-art review of biowaste biorefinery. Environmental Pollution 269:116149

    Article  CAS  Google Scholar 

  21. Slorach PC, Jeswani HK, Cuéllar-Franca R, and Azapagic A (2019) Environmental sustainability of anaerobic digestion of household food waste. Journal of Environmental Management 236:798–814

    Article  CAS  Google Scholar 

  22. Al-Rumaihi A, McKay G, Mackey HR, and Al-Ansari T (2020) Environmental Impact Assessment of Food Waste Management Using Two Composting Techniques. Sustainability 12(4):1595

    Article  CAS  Google Scholar 

  23. Jin Y, Chen T, Chen X, and Yu Z (2015) Life-cycle assessment of energy consumption and environmental impact of an integrated food waste-based biogas plant. Applied Energy 151:227–236

    Article  CAS  Google Scholar 

  24. Scarfato P, Di Maio L, and Incarnato L (2015) Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging. Journal of Applied Polymer Science 132(48)

    Google Scholar 

  25. Sikarwar VS, Zhao M, Clough P, Yao J, Zhong X, Memon MZ, Shah N, Anthony EJ, and Fennell PS (2016) An overview of advances in biomass gasification. Energy & Environmental Science 9(10):2939–2977

    Article  CAS  Google Scholar 

  26. Lee SY, Sankaran R, Chew KW, Tan CH, Krishnamoorthy R, Chu D-T, and Show P-L (2019) Waste to bioenergy: a review on the recent conversion technologies. BMC Energy 1(1):4

    Article  Google Scholar 

  27. Bhatia SK, Joo H-S, and Yang Y-H (2018) Biowaste-to-bioenergy using biological methods – A mini-review. Energy Conversion and Management 177:640–660

    Article  CAS  Google Scholar 

  28. Naik SN, Goud VV, Rout PK, and Dalai AK (2010) Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews 14(2):578–597

    Article  CAS  Google Scholar 

  29. Dimitriadis A and Bezergianni S (2017) Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review. Renewable and Sustainable Energy Reviews 68:113–125

    Article  CAS  Google Scholar 

  30. Dhyani V and Bhaskar T (2018) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy 129:695–716

    Article  CAS  Google Scholar 

  31. Chen Y, Cheng JJ, and Creamer KS (2008) Inhibition of anaerobic digestion process: A review. Bioresource Technology 99(10):4044–4064

    Article  CAS  Google Scholar 

  32. De la Rubia MA, Villamil JA, Rodriguez JJ, Borja R, and Mohedano AF (2018) Mesophilic anaerobic co-digestion of the organic fraction of municipal solid waste with the liquid fraction from hydrothermal carbonization of sewage sludge. Waste Management 76:315–322

    Article  Google Scholar 

  33. Sakurai H, Masukawa H, Kitashima M, and Inoue K (2013) Photobiological hydrogen production: Bioenergetics and challenges for its practical application. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 17:1–25

    Article  CAS  Google Scholar 

  34. Wang H and Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnology Advances 31(8):1796–1807

    Article  Google Scholar 

  35. Osman AI, Mehta N, Elgarahy AM, Al-Hinai A, Al-Muhtaseb AAH, and Rooney DW (2021) Conversion of biomass to biofuels and life cycle assessment: a review. Environmental Chemistry Letters 19(6):4075–4118

    Article  CAS  Google Scholar 

  36. Stathopoulos N, Belessiotis G, Oikonomou P, and Papanicolaou E (2020) Experimental investigation of thermal degradation of phase change materials for medium-temperature thermal energy storage and tightness during cycling inside metal spheres. Journal of Energy Storage 31:101618

    Article  Google Scholar 

  37. Belessiotis GV, Antoniadou M, Ibrahim I, Karagianni CS, and Falaras P (2022) Universal electrolyte for DSSC οperation under both simulated solar and indoor fluorescent lighting. Materials Chemistry and Physics 277:125543

    Article  CAS  Google Scholar 

  38. Ibrahim I, Belessiotis GV, Arfanis MK, Athanasekou C, Philippopoulos AI, Mitsopoulou CA, Romanos GE, and Falaras P (2020) Surfactant Effects on the Synthesis of Redox Bifunctional V2O5 Photocatalysts. Materials 13(20):4665

    Article  CAS  Google Scholar 

  39. Hamed I, Jakobsen AN, and Lerfall J (2022) Sustainable edible packaging systems based on active compounds from food processing byproducts: A review. Comprehensive Reviews in Food Science and Food Safety 21(1):198–226

    Article  Google Scholar 

  40. Kakadellis S and Harris ZM (2020) Don’t scrap the waste: The need for broader system boundaries in bioplastic food packaging life-cycle assessment–A critical review. Journal of Cleaner Production 274:122831

    Article  Google Scholar 

  41. Belessiotis GV, Papadokostaki KG, Favvas EP, Efthimiadou EK, and Karellas S (2018) Preparation and investigation of distinct and shape stable paraffin/SiO2 composite PCM nanospheres. Energy Conversion and Management 168:382–394

    Article  CAS  Google Scholar 

  42. Al-Tayyar NA, Youssef AM, and Al-Hindi R (2020) Antimicrobial food packaging based on sustainable Bio-based materials for reducing foodborne Pathogens: A review. Food chemistry 310:125915

    Article  CAS  Google Scholar 

  43. Malhotra B, Keshwani A, and Kharkwal H (2015) Antimicrobial food packaging: Potential and pitfalls. Frontiers in microbiology 6:611

    Article  Google Scholar 

  44. Siracusa V, Rocculi P, Romani S, and Dalla Rosa M (2008) Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology 19(12):634–643

    Article  CAS  Google Scholar 

  45. Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agriculture and Agricultural Science Procedia 2:296–303

    Article  Google Scholar 

  46. Priyadarshi R and Rhim J-W (2020) Chitosan-based biodegradable functional films for food packaging applications. Innovative Food Science & Emerging Technologies 62:102346

    Article  CAS  Google Scholar 

  47. Zhao X, Cornish K, and Vodovotz Y (2020) Narrowing the gap for bioplastic use in food packaging: an update. Environmental science & technology 54(8):4712–4732

    Article  CAS  Google Scholar 

  48. Li B, Elango J, and Wu W (2020) Recent Advancement of Molecular Structure and Biomaterial Function of Chitosan from Marine Organisms for Pharmaceutical and Nutraceutical Application. Applied Sciences 10(14):4719

    Article  CAS  Google Scholar 

  49. Terzioğlu P, Güney F, Parın FN, Şen İ, and Tuna S (2021) Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications. Food Packaging and Shelf Life 30:100742

    Article  Google Scholar 

  50. Russo I, Confente I, Scarpi D, and Hazen BT (2019) From trash to treasure: The impact of consumer perception of bio-waste products in closed-loop supply chains. Journal of Cleaner Production 218:966–974

    Article  Google Scholar 

  51. Melendez-Rodriguez B, Castro-Mayorga JL, Reis MA, Sammon C, Cabedo L, Torres-Giner S, and Lagaron JM (2018) Preparation and characterization of electrospun food biopackaging films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) derived from fruit pulp biowaste. Frontiers in Sustainable Food Systems 2:38

    Article  Google Scholar 

  52. Castro Mayorga JL, Fabra Rovira MJ, Cabedo Mas L, Sánchez Moragas G, and Lagarón Cabello JM (2018) Antimicrobial nanocomposites and electrospun coatings based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and copper oxide nanoparticles for active packaging and coating applications. Journal of Applied Polymer Science 135(2):45673

    Article  Google Scholar 

  53. Vigneswari S, Noor MSM, Amelia TSM, Balakrishnan K, Adnan A, Bhubalan K, Amirul A-AA, and Ramakrishna S (2021) Recent Advances in the Biosynthesis of Polyhydroxyalkanoates from Lignocellulosic Feedstocks. Life 11(8):807

    Article  CAS  Google Scholar 

  54. Chatani Y, Suehiro K, Ôkita Y, Tadokoro H, and Chujo K (1968) Structural studies of polyesters. I. Crystal structure of polyglycolide. Die Makromolekulare Chemie 113(1):215–229

    Article  CAS  Google Scholar 

  55. Vartiainen J, Shen Y, Kaljunen T, Malm T, Vähä-Nissi M, Putkonen M, and Harlin A (2016) Bio-based multilayer barrier films by extrusion, dispersion coating and atomic layer deposition. Journal of Applied Polymer Science 133(2)

    Google Scholar 

  56. Murcia Valderrama MA, van Putten R-J, and Gruter G-JM (2020) PLGA Barrier Materials from CO2. The influence of Lactide Co-monomer on Glycolic Acid Polyesters. ACS Applied Polymer Materials 2(7):2706–2718

    Article  CAS  Google Scholar 

  57. Pajoumshariati S, Shirali H, Yavari SK, Sheikholeslami SN, Lotfi G, Mashhadi Abbas F, and Abbaspourrad A (2018) GBR membrane of novel poly (butylene succinate-co-glycolate) co-polyester co-polymer for periodontal application. Scientific Reports 8(1):7513

    Article  Google Scholar 

  58. Samantaray PK, Little A, Haddleton DM, McNally T, Tan B, Sun Z, Huang W, Ji Y, and Wan C (2020) Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications. Green Chemistry 22(13):4055–4081

    Article  CAS  Google Scholar 

  59. Melendez-Rodriguez B, Castro-Mayorga JL, Reis MAM, Sammon C, Cabedo L, Torres-Giner S, and Lagaron JM (2018) Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems 2

    Google Scholar 

  60. Melendez-Rodriguez B, Torres-Giner S, Lorini L, Valentino F, Sammon C, Cabedo L, and Lagaron JM (2020) Valorization of municipal biowaste into electrospun poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Biopapers for food packaging applications. ACS Applied Bio Materials 3(9):6110–6123

    Article  CAS  Google Scholar 

  61. Sanchez-Safont EL, Cabedo L, and Gamez-Perez J (2021) Cellulose-Reinforced Biocomposites Based on PHB and PHBV for Food Packaging Applications. Sustainable Food Packaging Technology:225–261

    Google Scholar 

  62. Meléndez-Rodríguez B, Torres-Giner S, Reis MA, Silva F, Matos M, Cabedo L, and Lagarón JM (2021) Blends of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with fruit pulp biowaste derived poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) for organic recycling food packaging. Polymers 13(7):1155

    Article  Google Scholar 

  63. Preethi R, Moses J, and Anandharamakrishnan C (2021) Development of anacardic acid incorporated biopolymeric film for active packaging applications. Food Packaging and Shelf Life 28:100656

    Article  CAS  Google Scholar 

  64. Ko K, Dadmohammadi Y, and Abbaspourrad A (2021) Nutritional and bioactive components of pomegranate waste used in food and cosmetic applications: A review. Foods 10(3):657

    Article  CAS  Google Scholar 

  65. Seth M and Jana S (2021) Development of superhydrophobic coating from biowaste and natural wax. Materials Today: Proceedings

    Google Scholar 

  66. Tumwesigye K, Sousa A, Oliveira J, and Sousa-Gallagher M (2017) Evaluation of novel bitter cassava film for equilibrium modified atmosphere packaging of cherry tomatoes. Food Packaging and Shelf Life 13:1–14

    Article  Google Scholar 

  67. Engel JB, Ambrosi A, and Tessaro IC (2019) Development of biodegradable starch-based foams incorporated with grape stalks for food packaging. Carbohydrate Polymers 225:115234

    Article  CAS  Google Scholar 

  68. Emran MY, El-Safty SA, Selim MM, Minowa T, Elmarakbi A, and Shenashen MA (2021) Non-metal sensory electrode design and protocol of DNA-nucleobases in living cells exposed to oxidative stresses. Analytica Chimica Acta 1142:143–156

    Article  CAS  Google Scholar 

  69. Emran MY, El-Safty SA, Selim MM, Reda A, Morita H, and Shenashen MA (2021) Electrochemical sensors-based phosphorus-doped carbon for determination of adenine DNA-nucleobases in living cells. Carbon 173:1093–1104

    Article  CAS  Google Scholar 

  70. Emran MY, El-Safty SA, Shenashen MA, and Minowa T (2019) A well-thought-out sensory protocol for screening of oxygen reactive species released from cancer cells. Sensors and Actuators B: Chemical 284:456–467

    Article  CAS  Google Scholar 

  71. Emran Mohammed Y, Mekawy M, Akhtar N, Shenashen Mohamed A, El-Sewify Islam M, Faheem A, and El-Safty Sherif A (2018) Broccoli-shaped biosensor hierarchy for electrochemical screening of noradrenaline in living cells. Biosensors and Bioelectronics 100:122–131

    Article  CAS  Google Scholar 

  72. Emran MY, Shenashen MA, Eid AI, Selim MM, and El-Safty SA (2021) Portable sensitive and selective biosensing assay of dopamine in live cells using dual phosphorus and nitrogen doped carbon urchin-like structure. Chemical Engineering Journal:132818

    Google Scholar 

  73. Emran MY, Shenashen MA, El Sabagh A, Selim MM, and El-Safty SA (2022) Enzymeless copper microspheres@carbon sensor design for sensitive and selective acetylcholine screening in human serum. Colloids and Surfaces B: Biointerfaces 210:112228

    Article  CAS  Google Scholar 

  74. Emran MY, Shenashen MA, El-Safty SA, Reda A, and Selim MM (2021) Microporous P-doped carbon spheres sensory electrode for voltammetry and amperometry adrenaline screening in human fluids. Microchimica Acta 188(4):138

    Article  CAS  Google Scholar 

  75. Emran MY, Shenashen MA, El-Safty SA, Selim MM, Minowa T, and Elmarakbi A (2020) Three-Dimensional Circular Surface Curvature of a Spherule-Based Electrode for Selective Signaling and Dynamic Mobility of Norepinephrine in Living Cells. ACS Applied Bio Materials 3(12):8496–8506

    Article  CAS  Google Scholar 

  76. Emran MY, Talat E, El-Safty SA, Shenashen MA, and Saad EM (2021) Influence of hollow sphere surface heterogeneity and geometry of N-doped carbon on sensitive monitoring of acetaminophen in human fluids and pharmaceutical products. New Journal of Chemistry 45(12):5452–5462

    Article  CAS  Google Scholar 

  77. Emran MY, Shenashen MA, Abdelwahab AA, Abdelmottaleb M, Khairy M, and El-Safty SA (2018) Nanohexagonal Fe2O3 Electrode for One-Step Selective Monitoring of Dopamine and Uric Acid in Biological Samples. Electrocatalysis 9(4):514–525

    Article  CAS  Google Scholar 

  78. Emran MY, Shenashen MA, Abdelwahab AA, Khalifa H, Mekawy M, Akhtar N, Abdelmottaleb M, and El-Safty SA (2018) Design of hierarchical electrocatalytic mediator for one step, selective screening of biomolecules in biological fluid samples. Journal of Applied Electrochemistry 48(5):529–542

    Article  CAS  Google Scholar 

  79. Emran MY, Shenashen MA, Morita H, and El-Safty SA (2018) 3D-Ridge Stocked Layers of Nitrogen-Doped Mesoporous Carbon Nanosheets for Ultrasensitive Monitoring of Dopamine Released from PC12 Cells under K+ Stimulation. Advanced Healthcare Materials 7(16):1701459

    Article  Google Scholar 

  80. Emran MY, Shenashen MA, Morita H, and El-Safty SA (2018) One-step selective screening of bioactive molecules in living cells using sulfur-doped microporous carbon. Biosensors and Bioelectronics 109:237–245

    Article  CAS  Google Scholar 

  81. Ibrahim I, Kaltzoglou A, Athanasekou C, Katsaros F, Devlin E, Kontos AG, Ioannidis N, Perraki M, Tsakiridis P, and Sygellou L (2020) Magnetically separable TiO2/CoFe2O4/Ag nanocomposites for the photocatalytic reduction of hexavalent chromium pollutant under UV and artificial solar light. Chemical engineering journal 381:122730

    Article  CAS  Google Scholar 

  82. Kowsalya E, MosaChristas K, Balashanmugam P, Manivasagan V, Devasena T, and Jaquline CRI (2021) Sustainable use of biowaste for synthesis of silver nanoparticles and its incorporation into gelatin-based nanocomposite films for antimicrobial food packaging applications. Journal of Food Process Engineering 44(3):e13641

    Article  CAS  Google Scholar 

  83. Priyadarshi R and Negi YS (2017) Effect of Varying Filler Concentration on Zinc Oxide Nanoparticle Embedded Chitosan Films as Potential Food Packaging Material. Journal of Polymers and the Environment 25(4):1087–1098

    Article  CAS  Google Scholar 

  84. Zhang X, Xiao G, Wang Y, Zhao Y, Su H, and Tan T (2017) Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydrate Polymers 169:101–107

    Article  CAS  Google Scholar 

  85. Ahmed J, Mulla M, and Arfat YA (2017) Mechanical, thermal, structural and barrier properties of crab shell chitosan/graphene oxide composite films. Food Hydrocolloids 71:141–148

    Article  CAS  Google Scholar 

  86. Sun F, Cha H-R, Bae K, Hong S, Kim J-M, Kim SH, Lee J, and Lee D (2011) Mechanical properties of multilayered chitosan/CNT nanocomposite films. Materials Science and Engineering: A 528(21):6636–6641

    Article  CAS  Google Scholar 

  87. Sharma G, Naushad M, Kumar A, Kumar A, Ahamad T, and Stadler FJ (2020) Facile fabrication of chitosan-cl-poly(AA)/ZrPO4 nanocomposite for remediation of rhodamine B and antimicrobial activity. Journal of King Saud University - Science 32(2):1359–1365

    Article  Google Scholar 

  88. Emran MY, El-Safty SA, Elmarakbi A, Reda A, El Sabagh A, and Shenashen MA (2022) Chipset Nanosensor Based on N-Doped Carbon Nanobuds for Selective Screening of Epinephrine in Human Samples. Advanced Materials Interfaces 9(1):2101473

    Article  CAS  Google Scholar 

  89. Emran MY, Shenashen MA, Eid AI, Selim MM, and El-Safty SA (2022) Portable sensitive and selective biosensing assay of dopamine in live cells using dual phosphorus and nitrogen doped carbon urchin-like structure. Chemical Engineering Journal 430:132818

    Article  CAS  Google Scholar 

  90. Emran MY, Shenashen MA, Elmarakbi A, Selim MM, and El-Safty SA (2022) Nitrogen-doped carbon hollow trunk-like structure as a portable electrochemical sensor for noradrenaline detection in neuronal cells. Analytica Chimica Acta 1192:339380

    Article  CAS  Google Scholar 

  91. Bahadoran A, Liu Q, Masudy-Panah S, De Lile JR, Ramakrishna S, Fakhri A, and Gupta VK (2021) Assessment of silver doped cobalt titanate supported on chitosan-amylopectin nanocomposites in the photocatalysis performance under sunlight irradiation, and antimicrobial activity. Surfaces and Interfaces 25:101191

    Article  CAS  Google Scholar 

  92. Lin B, Luo Y, Teng Z, Zhang B, Zhou B, and Wang Q (2015) Development of silver/titanium dioxide/chitosan adipate nanocomposite as an antibacterial coating for fruit storage. LWT-Food Science and Technology 63(2):1206–1213

    Article  CAS  Google Scholar 

  93. Siripatrawan U and Kaewklin P (2018) Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocolloids 84:125–134

    Article  CAS  Google Scholar 

  94. Hanafy MS, Desoky WM, Hussein EM, El-Shaer NH, Gomaa M, Gamal AA, Esawy MA, and Guirguis OW (2021) Biological applications study of bio-nanocomposites based on chitosan/TiO2 nanoparticles polymeric films modified by oleic acid. Journal of Biomedical Materials Research Part A 109(2):232–247

    Article  CAS  Google Scholar 

  95. Youssef AM, Abou-Yousef H, El-Sayed SM, and Kamel S (2015) Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films. International journal of biological macromolecules 76:25–32

    Article  CAS  Google Scholar 

  96. Boura-Theodoridou O, Giannakas A, Katapodis P, Stamatis H, Ladavos A, and Barkoula N-M (2020) Performance of ZnO/chitosan nanocomposite films for antimicrobial packaging applications as a function of NaOH treatment and glycerol/PVOH blending. Food Packaging and Shelf Life 23:100456

    Article  Google Scholar 

  97. Ahmad AA and Sarbon NM (2021) A comparative study: Physical, mechanical and antibacterial properties of bio-composite gelatin films as influenced by chitosan and zinc oxide nanoparticles incorporation. Food Bioscience 43:101250

    Article  CAS  Google Scholar 

  98. Bodaghi H, Mostofi Y, Oromiehie A, Zamani Z, Ghanbarzadeh B, Costa C, Conte A, and Del Nobile MA (2013) Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests. LWT-Food Science and Technology 50(2):702–706

    Article  CAS  Google Scholar 

  99. Radhi A, Mohamad D, Rahman FSA, Abdullah AM, and Hasan H (2021) Mechanism and factors influence of graphene-based nanomaterials antimicrobial activities and application in dentistry. Journal of Materials Research and Technology 11:1290–1307

    Article  CAS  Google Scholar 

  100. Ramalingam B, Parandhaman T, and Das SK (2016) Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Applied Materials & Interfaces 8(7):4963–4976

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Y. Emran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Emran, M.Y. et al. (2023). Biowaste Materials for Advanced Biodegradable Packaging Technology. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-09710-2_46

Download citation

Publish with us

Policies and ethics