Skip to main content

Scientific Thinking in Young Children: Development, Culture, and Education

  • Chapter
  • First Online:
Childhood in Turkey: Educational, Sociological, and Psychological Perspectives

Part of the book series: Science Across Cultures: The History of Non-Western Science ((SACH,volume 11))

Abstract

Young children are sometimes considered “little scientists” due to their natural curiosity, exploratory play, and precocious abilities to learn new information. Developmental research has shown that this is more than a metaphor and young children have indeed nascent abilities to think scientifically. Preschoolers can differentiate confounded from unconfounded evidence, they design conclusive experiments, or use informative evidence to refute false causal claims. In the last decades, scholars, educators, and policymakers around the world highlighted many benefits of fostering scientific thinking from early on, such as facilitating later scientific thinking skills, increasing children’s motivation for and interest in science, or developing scientifically literate citizens. Relatedly, the number of investigations on fostering science learning in preschool classrooms has been increasing in recent years. The current chapter aims to provide state-of-the-art knowledge on the development and education of scientific thinking in the preschool years. Empirical findings from both developmental and learning sciences were discussed in the light of similarities and differences among different populations, with a specific focus on Turkish children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akman, B., & Güçhan Özgül, S. (2015). Role of play in teaching science in the early childhood years. In K. C. Trundle & M. Saçkes (Eds.), Research in early childhood science education (pp. 237–258). Springer Science+Business Media. https://doi.org/10.1007/978-94-017-9505-0_11

    Chapter  Google Scholar 

  • Aktürk, A. A., Demircan, H. Ö., Şenyurt, E., & Çetin, M. (2017). Turkish early childhood education curriculum from the perspective of STEM education: A document analysis. Journal of Turkish Science Education, 14(4), 16–34. https://doi.org/10.12973/tused.10210a

    Article  Google Scholar 

  • Akyol, N., & Birinci Konur, K. (2018). Okul öncesi dönemde fen eğitiminin uygulanabilirliğine yönelik öğretmen ve yönetici görüşlerinin incelenmesi [The examination of preschool teachers’ and school managers’ views on the applicability of pre-school science education]. Kastamonu Education Journal, 26(2), 547–557. https://doi.org/10.24106/kefdergi.389823

    Article  Google Scholar 

  • Alabay, E. (2009). Analysis of science and nature corners in preschool institutions (Example of Konya province). Procedia Social and Behavioral Science, 1, 857–861. https://doi.org/10.1016/j.sbspro.2009.01.154

    Article  Google Scholar 

  • Alabay, E., & Özdoğan, İ. M. (2018). Okulöncesi çocuklara dış alanda uygulanan sorgulama tabanlı bilim etkinliklerinin bilimsel süreç becerilerine etkisinin incelenmesi [Research on the effects of inquiry-based science activities to science process skills of preschool children practicing the outdoor activities]. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 8(3), 481–496. https://doi.org/10.24315/trkefd.312655

    Article  Google Scholar 

  • Alabay, E., Yıldırım Doğru, S. S., & Akman, B. (2020). Sciencestart!™ destekli bilim eğitim programının 60-72 aylık çocukların bilimsel süreç becerilerine ve bilimsel inanca ve yönelime etkisi [The effect of Sciencestart!™ assisted science education program on 60-72 months old childrens’ scientific process skills and scientific belief and tendency]. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 35(1), 20–39. https://doi.org/10.16986/HUJE.2018037123

    Article  Google Scholar 

  • Allen, S. (2004). Designs for learning: Studying science museum exhibits that do more than entertain. Science Education, 88(S1), S17–S33. https://doi.org/10.1002/sce.20016

    Article  Google Scholar 

  • Anders, Y., Hardy, I., Pauen, S., Ramseger, J., Sodian, B., & Steffensky, M. (2018). Early science education – goals and process-related quality criteria for science teaching (Vol. 5). Barbara Budrich. https://doi.org/10.3224/84740559

    Book  Google Scholar 

  • Aydoğdu, F., & Dilekmen, M. (2018). İlkokul öğrencilerinin anneleriyle geçirdikleri boş zamanların annelerin görüşlerine göre incelenmesi [Analyzing the leisure time elementary school students spend withtheir mothers according to the views of mothers]. Sakarya Üniversitesi Eğitim Fakültesi Dergisi, 35, 49–63.

    Google Scholar 

  • Aysu, B., & Aral, N. (2016). Okul öncesi öğretmenlerinin öğrenme merkezleri hakkındaki görüş ve uygulamalarının incelenmesi [An investigation of the preschool teachers’ views and practices on learning centers]. Kastamonu Eğitim Dergisi, 24(5), 2561–2574.

    Google Scholar 

  • Bauer, J. R., & Booth, A. E. (2019). Exploring potential cognitive foundations of scientific literacy in preschoolers: Causal reasoning and executive function. Early Childhood Research Quarterly 46, 275–284. https://doi.org/10.1016/j.ecresq.2018.09.007

  • Bonawitz, E., Shafto, P., Gweon, H., Goodman, N. H., Spelke, E., & Schulz, L. (2011). The double-edged sword of pedagogy: Instruction limits spontaneous exploration and discovery. Cognition, 120(3), 322–330. https://doi.org/10.1016/j.cognition.2010.10.001

    Article  Google Scholar 

  • Braund, M., & Reiss, M. (2006). Towards a more authentic science curriculum: The contributions of out-of-school learning. International Journal of Science Education, 28(12), 1373–1388. https://doi.org/10.1080/09500690500498419

    Article  Google Scholar 

  • Brenneman, K., Stevenson-Boyd, J., & Frede, E. C. (2009). Math and science in preschool: Policies and practice. Preschool Policy Brief, 19, 1–12.

    Google Scholar 

  • Bulunuz, M. (2013). Teaching science through play in kindergarten: Does integrated play and science instruction build understanding. European Early Childhood Education Research Journal, 21(2), 226–249. https://doi.org/10.1080/1350293x.2013.789195

    Article  Google Scholar 

  • Büyüktaşkapu, S., Çeliköz, N., & Akman, B. (2012). The effects of constructivist science teaching program on scientific processing skills of 6-year-old children. Education and Science, 37(165), 275–292.

    Google Scholar 

  • Callanan, M. A., & Jipson, J. L. (2001). Explanatory conversations and young children’s developing scientific literacy. In K. Crowley, C. D. Schunn, & T. Okada (Eds.), Designing for science: Implications from everyday, classroom, and professional settings (pp. 21–49). Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  • Chandler-Campbell, I. L., Leech, K. A., & Corriveau, K. H. (2020). Investigating science together: Inquiry-based training promotes scientific conversations in parent-child interactions. Frontiers in Psychology, 11, 1–12. https://doi.org/10.3389/fpsyg.2020.01934

    Article  Google Scholar 

  • Chouinard, M. M. (2007). Children’s questions: A mechanism for cognitive development. Monographs of the Society for Research in Child Development, 72(286), v–112.

    Google Scholar 

  • Çığrık, E. (2016). Bir öğrenme ortamı olarak bilim merkezleri [Science center as a learning environment]. İnformal Ortamlarda Araştırmalar Dergisi, 1(1), 79–97.

    Google Scholar 

  • Cook, C., Goodman, N. D., & Schulz, L. E. (2011). Where science starts: Spontaneous experiments in preschoolers’ exploratory play. Cognition, 120, 341–349. https://doi.org/10.1016/j.cognition.2011.03.003

    Article  Google Scholar 

  • Croker, S., & Buchanan, H. (2011). Scientific reasoning in a real-world context: The effect of prior belief and outcome on children’s hypothesis-testing strategies. British Journal of Developmental Psychology, 29(3), 409–424. https://doi.org/10.1348/026151010x496906

    Article  Google Scholar 

  • Crowley, K., Callanan, M. A., Jipson, J. L., Galco, J., Topping, K., & Shrager, J. (2001). Shared scientific thinking in everyday parent-child activity. Science Education, 85(6), 712–732. https://doi.org/10.1002/sce.1035

    Article  Google Scholar 

  • Dean, D., Jr., & Kuhn, D. (2007). Direct instruction vs. discovery: The long view. Science Education, 91(3), 384–397. https://doi.org/10.1002/sce.20194

    Article  Google Scholar 

  • Dilek, H., Tasdemir, A., Konca, A. S., & Baltaci, S. (2020). Preschool children’s science motivation and process skills during inquiry-based STEM activities. Journal of Education in Science, Environment, Health, 6(2), 92–104. https://doi.org/10.21891/jeseh.673901

    Article  Google Scholar 

  • Dunbar, K. (1995). How scientists really reason: Scientific reasoning in real-world laboratories. In R. J. Sternberg & J. Davidson (Eds.), Mechanisms of insight (pp. 365–395). MIT Press.

    Google Scholar 

  • Dunbar, K., & Fugelsang, J. (2005). Scientific thinking and reasoning. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 705–725). Cambridge University Press.

    Google Scholar 

  • Early, D. M., Iruka, I. U., Ritchie, S., Barbarin, O. A., Winn, D. C., Crawford, G. M., Frome, P. M., Clifford, R. M., Burchinal, M., Howes, C., Bryant, D. M., & Pianta, R. C. (2010). How do pre-kindergarteners spend their time? Gender, ethnicity and income as predictors of experiences in pre-kindergarten classrooms. Early Childhood Education Quarterly, 25, 177–193. https://doi.org/10.1016/j.ecresq.2009.10.003

    Article  Google Scholar 

  • Education, Audiovisual and Culture Executive Agency (EACEA). (2020). Turkey overivew: Basic characteristics of education system. Retrieved December 29, 2020, from https://eacea.ec.europa.eu/national-policies/eurydice/content/turkey_en

  • Erten, Z., & Taşçi, G. (2016). Fen bilgisi dersine yönelik okul dışı öğrenme ortamları etkinliklerinin geliştirilmesi ve öğrencilerin bilimsel süreç becerilerine etkisinin değerlendirilmesi [Developing activities of out of the school learning environments for science classes, and analysing their effects on students’ scientific process skills]. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 18(2), 638–657. https://doi.org/10.17556/jef.41328

    Article  Google Scholar 

  • Eshach, H., & Fried, M. N. (2005). Should science be taught in early childhood? Journal of Science Education and Technology, 14(3), 315–336. https://doi.org/10.1007/s10956-005-7198-9

    Article  Google Scholar 

  • Falk, J. H., & Dierking, L. D. (1997). School field trips: Assessing their long-term impact. Curator: The Museum Journal, 40(3), 211–218. https://doi.org/10.1111/j.2151-6952.1997.tb01304.x

    Article  Google Scholar 

  • Fischer, F., Kollar, I., Ufer, S., Sodian, B., Hussmann, H., Pekrun, R., Neuhaus, B., Dorner, B., Pankofer, S., Fischer, M., Strijbos, J., Heene, M., & Eberle, J. (2014). Scientific reasoning and argumentation: Advancing an interdisciplinary research agenda in education. Frontline Learning Research, 2(3), 28–45. https://doi.org/10.14786/flr.v2i2.96

    Article  Google Scholar 

  • Frazier, B. N., Gelman, S. A., & Wellman, H. M. (2009). Preschoolers’ search for explanatory information within adult-child conversation. Child Development, 80, 1592–1611. https://doi.org/10.1111/j.1467-8624.2009.01356.x

    Article  Google Scholar 

  • French, L. (2004). Science as the center of a coherent, integrated early childhood curriculum. Early Childhood Research Quarterly, 19(1), 138–149. https://doi.org/10.1016/j.ecresq.2004.01.004

    Article  Google Scholar 

  • French, L., Conezio, K., & Boynton, M. (2000). Using science as the hub of an early childhood curriculum: the sciencestart!™ curriculum. Retrieved November 06, 2020, from https://eric.ed.gov/?id=ED470901

  • Garbett, D. (2003). Science education in early childhood teacher education: Putting forward a case to enhance student teachers’ confidence and competence. Research in Science Education, 33(4), 467–481. https://doi.org/10.1023/B:RISE.0000005251.20085.62

    Article  Google Scholar 

  • Gauvain, M., Munroe, R. L., & Beebe, H. (2013). Children’s questions in cross-cultural perspective a four-culture study. Journal of Cross-Cultural Psychology, 44(7), 1148–1165. https://doi.org/10.1177/0022022113485430

    Article  Google Scholar 

  • Gelman, R., & Brenneman, K. (2004). Science learning pathways for young children. Early Childhood Research Quarterly, 19(1), 150–158. https://doi.org/10.1016/j.ecresq.2004.01.009

  • Geyer, C., Neubauer, K., & Lewalter, D. (2013). Public understanding of science via research areas in science museums: The evaluation of the EU project NanoToTouch. In L. Locke & S. Locke (Eds.), Knowledge in publics: Beyond deficit, engagement and transfer (pp. 50–74). Cambridge Scholars.

    Google Scholar 

  • Göncü, A., Mistry, J., & Mosier, C. (2000). Cultural variations in the play of toddlers. International Journal of Behavioral Development, 24(3), 321–329. https://doi.org/10.1080/01650250050118303

    Article  Google Scholar 

  • Gopnik, A. (2012). Scientific thinking in young children: Theoretical advances, empirical research, and policy implications. Science, 337(6102), 1623–1627. https://doi.org/10.1126/science.1223416

    Article  Google Scholar 

  • Gopnik, A., Meltzoff, A. N., & Kuhl, P. K. (1999). The scientist in the crib: Minds, brains, and how children learn. William Morrow & Co.

    Google Scholar 

  • Greenfield, D., Jirout, J., Dominguez, X., Greenberg, A., Maier, M., & Fuccillo, J. (2009). Science in the preschool classroom: A programmatic research agenda to improve science readiness. Early Education & Development, 20, 238–264. https://doi.org/10.1080/10409280802595441

    Article  Google Scholar 

  • Greenfield, D., Alexander, A., & Frechette, E. (2017). Unleashing the power of science in early childhood a foundation for high-quality interactions and learning. Zero to Three, 37(5), 13–21.

    Google Scholar 

  • Harris, P. L., & Koenig, M. A. (2006). Trust in testimony: How children learn about science and religion. Child Development, 77(3), 505–524. https://doi.org/10.1111/j.1467-8624.2006.00886.x

    Article  Google Scholar 

  • İnan, H. Z. (2011). Teaching science process skills in kindergarten. Energy education science and technology part B: Social and educational studies, 3. https://hdl.handle.net/20.500.12438/3251

  • Inhelder, B., & Piaget, J. (1958). Adolescent thinking. In B. Inhelder, J. Piaget, A. Parsons, & S. Milgram (Trans.), An essay on the construction of formal operational structures. The growth of logical thinking: From childhood to adolescence (p. 334–350). Basic Books. doi:https://doi.org/10.1037/10034-018

  • Irez, S. (2008). Nature of science as depicted in Turkish biology textbooks. Science Education, 93(3), 422–447. https://doi.org/10.1002/sce.20305

    Article  Google Scholar 

  • Jirout, J., & Klahr, D. (2012). Children’s scientific curiosity: In search of an operational definition of an elusive concept. Developmental Review, 32(2), 125–160. https://doi.org/10.1016/j.dr.2012.04.002

    Article  Google Scholar 

  • Kagitcibasi, C. (1970). Social norms and authoritarianism: A Turkish-American comparison. Journal of Personality and Social Psychology, 16(3), 444–451. https://doi.org/10.1037/h0030053

    Article  Google Scholar 

  • Karademir, A., Kartal, A., & Türk, C. (2020). Science education activities in Turkey: A qualitative comparison study in preschool classrooms. Early Childhood Education Journal, 48, 285–304. https://doi.org/10.1007/s10643-019-00981-1

    Article  Google Scholar 

  • Keleş, S., & Yurt, Ö. (2017). An investigation of playfulness of pre-school children in Turkey. Early Childhood Development and Care, 187(8), 1372–1387. https://doi.org/10.1080/03004430.2016.1169531

    Article  Google Scholar 

  • Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of direct instruction and discovery learning. Psychological Science, 15(10), 661–667. https://doi.org/10.1111/j.0956-7976.2004.00737.x

    Article  Google Scholar 

  • Klein, E. R., Hammrich, P. L., Bloom, S., & Ragins, A. (2000). Language development and science inquiry: The head start on science communication program. Early Childhood Research and Practice, 2(2), 1–22. Retrieved November 6, 2020, from https://ecrp.illinois.edu/v2n2/klein.html.

  • Kloo, D., Sodian, B., Kristen-Antonow, S., Kim, S., & Paulus, M. (2020). Knowing minds: Linking early perspective taking and later metacognitive insight. The British Journal of Developmental Psychology. https://doi.org/10.1111/bjdp.12359

  • Koerber, S., & Osterhaus, C. (2019). Individual differences in early scientific thinking: Assessment, cognitive influences, and their relevance for science learning. Journal of Cognition and Development, 20(4), 510–533. https://doi.org/10.1080/15248372.2019.1620232

    Article  Google Scholar 

  • Koerber, S., Sodian, B., Thoermer, C., & Nett, U. (2005). Scientific reasoning in young children: Preschoolers’ ability to evaluate covariation evidence. Swiss Journal of Psychology, 64(3), 141–152. https://doi.org/10.1024/1421-0185.64.3.141

    Article  Google Scholar 

  • Köksal, Ö., & Sodian, B. (2020). The developmental origins of the ability to differentiate hypothesis testing from effect production. Manuscript submitted for publication.

    Google Scholar 

  • Köksal, Ö., Sodian, B., & Legare, C. H. (2021). Young children’s metacognitive awareness of confounded evidence. Journal of Experimental Child Psychology, 205, 105080.

    Article  Google Scholar 

  • Köksal-Tuncer, Ö., & Sodian, B. (2018). The development of scientific reasoning: Hypothesis testing and argumentation from evidence in young children. Cognitive Development, 48, 135–145. https://doi.org/10.1016/j.cogdev.2018.06.011

    Article  Google Scholar 

  • Koslowski, B. (2012). Scientific reasoning: Explanation, confirmation bias, and scientific practice. In G. J. Feist & M. E. Gorman (Eds.), Handbook of the psychology of science (pp. 151–192). Springer.

    Google Scholar 

  • Koyuncu, A., & Kırgız, H. (2016). Bilim merkezlerinin öğrencilerin uluslararası sınavlardaki başarılarına etkisi [The effect of science centers on students’ achievements in international examinations]. İnformal Ortamlarda Araştırmalar Dergisi, 1(1), 52–60.

    Google Scholar 

  • Kuhn, D., & Pease, M. (2008). What needs to develop in the development of inquiry skills? Cognition and Instruction, 26, 512–559. https://doi.org/10.1080/07370000802391745

    Article  Google Scholar 

  • Kuhn, D., Amsel, E., O’Loughlin, M., Schauble, L., Leadbeater, B., & Yotive, W. (1988). The development of scientific thinking skills. Academic Press.

    Google Scholar 

  • Kurkul, K. E., & Corriveau, K. H. (2017). Question, explanation, follow-up: A mechanism for learning from others? Child Development, 89(1), 280–294. https://doi.org/10.1111/cdev.12726

    Article  Google Scholar 

  • Lapidow, E., & Walker, C. M. (2020). Informative experimentation in intuitive science: Children select and learn from their own causal interventions. Cognition, 201, 104315. https://doi.org/10.1016/j.cognition.2020.104315

    Article  Google Scholar 

  • Larimore, R. A. (2020). Preschool science education: A vision for the future. Early Childhood Education Journal. https://doi.org/10.1007/s10643-020-01033-9

  • Leech, K. A., Haber, A. S., Jalkh, Y., & Corriveau, K. H. (2020). Embedding scientific explanations into storybooks impacts children’s scientific discourse and learning. Frontiers in Psychology, 11, 1016. https://doi.org/10.3389/fpsyg.2020.01016

    Article  Google Scholar 

  • Legare, C. H. (2012). Exploring explanation: Explaining inconsistent evidence informs exploratory, hypothesis-testing behavior in young children. Child Development, 83(1), 173–185. https://doi.org/10.1111/j.1467-8624.2011.01691.x

    Article  Google Scholar 

  • Legare, C. H. (2014). The contributions of explanation and exploration to children’s scientific reasoning. Child Development Perspectives, 8, 101–106. https://doi.org/10.1111/cdep.12070

    Article  Google Scholar 

  • Legare, C. H., & Clegg, J. M. (2015). The development of children’s causal explanations. In S. Robson & S. Flannery Quinn (Eds.), The Routledge international handbook of young children’s thinking and understanding (pp. 65–73). Routledge. https://doi.org/10.4324/9781315746043

    Chapter  Google Scholar 

  • Legare, C. H., Wellman, H. M., & Gelman, S. A. (2009). Evidence for an explanation advantage in naïve biological reasoning. Cognitive Psychology, 58, 177–194. https://doi.org/10.1016/j.cogpsych.2008.06.002

    Article  Google Scholar 

  • Legare, C. H., Gelman, S. A., & Wellman, H. M. (2010). Inconsistency with prior knowledge triggers children’s causal explanatory reasoning. Child Development, 81(3), 929–944. https://doi.org/10.1111/j.1467-8624.2010.01443.x

    Article  Google Scholar 

  • Legare, C. H., Zhu, L., & Wellman, H. M. (2013). Examining biological explanations in Chinese preschool children: A cross-cultural comparison. Journal of Cognition and Culture, 13(1-2), 67–93. https://doi.org/10.1163/15685373-12342085

    Article  Google Scholar 

  • Legare, C. H., Schult, C., Impola, M., & Souza, A. L. (2016). Young children revise explanations in response to new evidence. Cognitive Development, 39, 45–56. https://doi.org/10.1016/j.cogdev.2016.03.003

    Article  Google Scholar 

  • Magnusson, S. J., & Palincsar, A. S. (1995). The learning environment as a site for science education reform. Theory into Practice, 34, 43–50. https://doi.org/10.1080/00405849509543656

    Article  Google Scholar 

  • Mantzicopoulos, P., Patrick, H., & Samarapungavan, A. (2008). Young children’s motivational beliefs about learning science. Early Childhood Research Quarterly, 23, 378–394. https://doi.org/10.1016/j.ecresq.2008.04.001

    Article  Google Scholar 

  • Mantzicopoulos, P., Patrick, H., & Samarapungavan, A. (2013). Science literacy in school and home contexts: Kindergarteners’ science achievement and motivation. Cognition and Instruction, 31(1), 62–119. https://doi.org/10.1080/07370008.2012.742087

    Article  Google Scholar 

  • Martin, A. J., Durksen, T. L., Williamson, D., Kiss, J., & Ginns, P. (2016). The role of a museum-based science education program in promoting content knowledge and science motivation. Journal of Research in Science Teaching, 53(9), 1364–1384. https://doi.org/10.1002/tea.21332

    Article  Google Scholar 

  • MoNE. (2013). T.C. Milli Eğitim Bakanlığı Okul Öncesi Eğitimi Genel Müdürlüğü 36-72 Aylık Çocuklar İçin Okul Öncesi Eğitim Programı [Republic of Turkey, General Directorate of Preschool Education, Preschool Education Curriculum for 36-72 Months Old Children] (pp. 9–17; 53–54). Ministry of National Education Publishing.

    Google Scholar 

  • Morris, B. J., Croker, S., Masnick, A. M., & Zimmerman, C. (2012). The emergence of scientific reasoning. In H. Kloos, B. J. Morris, & J. L. Amaral (Eds.), Current topics in children’s learning and cognition (pp. 61–82). https://doi.org/10.5772/53885

    Chapter  Google Scholar 

  • National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. Committee on science learning, Kindergarten through eighth grade. In R. A. Duschl, H. A. Schweingruber, & A. W. Shouse (Eds.), Board on Science Education, Center for Education. Division of Behavioral and Social Sciences and Education. The National Academies Press.

    Google Scholar 

  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a conceptual framework for new K-12 science education standards. The National Academies Press.

    Google Scholar 

  • Nayfeld, I., Brenneman, K., & Gelman, R. (2011). Science in the classroom: Finding a balance between autonomous exploration and teacher-led instruction in preschool settings. Early Education and Development, 22(6), 970–988. https://doi.org/10.1080/10409289.2010.507496

    Article  Google Scholar 

  • Nayfeld, I., Fuccillo, J., & Greenfield, D. B. (2013). Executive functions in early learning: Extending the relationship between executive functions and school readiness to science. Learning and Individual Differences, 26, 81–88. https://doi.org/10.1016/j.lindif.2013.04.011

    Article  Google Scholar 

  • NGSS Lead States. (2013). Next generation science standards: For states, by states. The National Academies Press.

    Google Scholar 

  • Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomena in many guises. Review of General Psychology, 2(2), 175–220. https://doi.org/10.1037/1089-2680.2.2.175

    Article  Google Scholar 

  • OECD. (2019). PISA 2018 Results (Volume I): What students know and can do, PISA. OECD Publishing. https://doi.org/10.1787/5f07c754-en

  • Olgan, R. (2015). Influences on Turkish early childhood teachers’ science teaching practices and the science content covered in the early years. Early Child Development and Care, 185(6), 926–942. https://doi.org/10.1080/03004430.2014.967689

    Article  Google Scholar 

  • Ormancı, Ü., & Çepni, S. (2019). Thematic analysis of conducted studies regarding preschool science education in Turkey. Journal of Turkish Science Education, 16(3), 415–439. https://doi.org/10.12973/tused.10291a)

    Google Scholar 

  • Öztürk Yılmaztekin, E., & Tantekin Erden, F. (2016). Pre-service early childhood teachers’ views about integrated curriculum. Kırşehir Eğitim Fakültesi Dergisi, 17(2), 33–49.

    Google Scholar 

  • Patrick, H., Mantzicopoulos, P., Patrick, H., Samarapungavan, A., & French, B. F. (2008). Patterns of young children’s motivation for science and teacher-child relationships. Journal of Experimental Education, 76, 121–144. https://doi.org/10.3200/JEXE.76.2.121-144

    Article  Google Scholar 

  • Pedaste, M., Mäeots, M., Siiman, L. A., De Jong, T., Van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47–61. https://doi.org/10.1016/j.edurev.2015.02.003

    Article  Google Scholar 

  • Penner, D. E., & Klahr, D. (1996). The interaction of domain-specific knowledge and domain-general discovery strategies: a study with sinking objects. Child Development, 67(6), 2709 2727. https://doi.org/10.2307/1131748

    Article  Google Scholar 

  • Rogoff, B., Mistry, J., Göncü, A., Mosier, C., Chavajay, P., & Heath, S. B. (1993). Guided participation in bultural activity by toddlers and caregivers. Monographs of the Society for Research in Child Development, 58(8), i–179. https://doi.org/10.2307/1166109

  • Rohwer, M., Kloo, D., & Perner, J. (2012). Escape from metaignorance: How children develop an understanding of their own lack of knowledge. Child Development, 83(6), 1869–1883. https://doi.org/10.1111/j.1467-8624.2012.01830.x

    Article  Google Scholar 

  • Ruffman, T., Perner, J., Olson, D. R., & Doherty, M. (1993). Reflecting on scientific thinking: Children’s understanding of the hypothesis–evidence relation. Child Development, 64(6), 1617–1636. https://doi.org/10.2307/1131459

    Article  Google Scholar 

  • Saçkes, M., Trundle, K. C., Bell, R. L., & O’Connell, A. A. (2011). The influence of early science experience in kindergarten on children’s immediate and later science achievement: Evidence from the early childhood longitudinal study. Journal of Research in Science Teaching, 48(2), 217–235. https://doi.org/10.1002/tea.20395

    Article  Google Scholar 

  • Saçkes, M., Trundle, K. C., & Shaheen, M. (2020). The effect of balanced learning@ curriculum on young children’s learning of science. Early Childhood Education Journal, 48, 305–312. https://doi.org/10.1007/s10643-019-00985-x

    Article  Google Scholar 

  • Saffran, A., Barchfeld, P., Sodian, B., & Alibali, M.W. (2017, September). Die Interpretation von Kovariationsdaten im Vor- und Grundschulalter – Einfluss der Symmetrie der Variablen [Preschool and elementary school children’s interpretation of covariation data – The effect of symmetry of variables]. In B. Sodian & A. Saffran (Chairs), Wissenschaftliches Denken im Vor- und Grundschulalter. Symposium conducted at the Gemeinsame Tagung der Fachgruppen Entwicklungspsychologie und Pädagogische Psychologie.

    Google Scholar 

  • Sak, R. (2015). Young children’s difficult questions and adults’ answers. The Anthropologist, 22(2), 293–300. https://doi.org/10.1080/09720073.2015.11891880

    Article  Google Scholar 

  • Sak, R. (2020). Preschoolers’ difficult questions and their teachers’ responses. Early Childhood Education Journal, 48, 59–70. https://doi.org/10.1007/s10643-019-00977-x

    Article  Google Scholar 

  • Sak, R., & Şahin-Sak, İ. T. (2020). Preschoolers’ difficult questions: variations by informant and gender. European Early Childhood Education Research Journal. https://doi.org/10.1080/1350293X.2020.1783927

  • Samarapungavan, A., Patrick, H., & Mantzicipoulos, P. (2011). What kindergarten students learn in inquiry-based science classrooms. Cognition and Instruction, 29(4), 416–470. https://doi.org/10.1080/07370008.2011.608027

    Article  Google Scholar 

  • Schauble, L. (1990). Belief revision in children: The role of prior knowledge and strategies for generating evidence. Journal of Experimental Child Psychology, 49(1), 31–57. https://doi.org/10.1016/0022-0965(90)90048-D

    Article  Google Scholar 

  • Schauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology, 32(1), 102–119. https://doi.org/10.1037/0012-1649.32.1.102

    Article  Google Scholar 

  • Schauble, L., Klopfer, L. E., & Raghavan, K. (1991). Students’ transition from an engineering model to a science model of experimentation. Journal of Research in Science Teaching, 28(9), 859–882. https://doi.org/10.1002/tea.3660280910

    Article  Google Scholar 

  • Schulz, L. (2012). The origins of inquiry: Inductive inference and exploration in early childhood. Trends in Cognitive Sciences, 16(7), 382–389. https://doi.org/10.1016/j.tics.2012.06.004

    Article  Google Scholar 

  • Schulz, L. E., & Bonawitz, E. B. (2007). Serious fun: Preschoolers engage in more exploratory play when evidence is confounded. Developmental Psychology, 43(4), 1045–1050. https://doi.org/10.1037/0012-1649.43.4.1045

    Article  Google Scholar 

  • Schwan, S., Grajal, A., & Lewalter, D. (2014). Understanding and engagement in places of science experience: Science museums, science centers, zoos, and aquariums. Educational Psychologist, 49(2), 70–85. https://doi.org/10.1080/00461520.2014.917588

  • Selcuk, B., Brink, K. A., Ekerim, M., & Wellman, H. M. (2018). Sequence of theory-of-mind acquisition in Turkish children from diverse social backgrounds. Infant and Child Development, 27(4), 1–14. https://doi.org/10.1002/icd.2098

    Article  Google Scholar 

  • Siegel, D. R., Esterly, J., Callanan, M. A., & Wright, R. (2007). Conversations about science across activities in Mexican-descent families. International Journal of Science Education, 29(12), 1447–1466. https://doi.org/10.1080/09500690701494100

    Article  Google Scholar 

  • Sobel, D. M., & Jipson, J. (2016). Relating research and practice: Cognitive development in museum settings. New York: Psychology Press.

    Google Scholar 

  • Sodian, B., Zaitchik, D., & Carey, S. (1991). Young children’s differentiation of hypothetical beliefs from evidence. Child Development, 62(4), 753–766. https://doi.org/10.2307/1131175

    Article  Google Scholar 

  • Szechter, L. E., & Carey, E. J. (2009). Gravitating toward science: Parent–child interactions at a gravitational-wave observatory. Science Education, 93(5), 846–858. https://doi.org/10.1002/sce.20333

    Article  Google Scholar 

  • Trilling, B., & Fadel, C. (2009). 21st century skills: Learning for life in our times. Jossey-Bass/Wiley.

    Google Scholar 

  • Tschirgi, J. E. (1980). Sensible reasoning: A hypothesis about hypotheses. Child Development, 51(1), 1–10. https://doi.org/10.2307/1129583

    Article  Google Scholar 

  • Tu, T. (2006). Preschool science environment: What is available in a preschool classroom? Early Childhood Education Journal, 33(4), 245–251. https://doi.org/10.1007/s10643-005-0049-8

    Article  Google Scholar 

  • Türkmen, H., Topkaç, D. D., & Atasayar Yamık, G. A. (2016). İnformal öğrenme ortamlarına yapılan gezilerin canlıların sınıflandırılması ve yaşadığımız çevre konusunun öğrenilmesine etkisi: tabiat tarihi müzesi ve botanik bahçesi örneği [The effect of field trips to informal learning environment on learning of “classification of living things”: case of the natural history museum and botanical garden]. Ege Eğitim Dergisi, 17(1), 174–197. https://doi.org/10.12984/eed.20218

    Article  Google Scholar 

  • Ünlütabak, B., Nicolopoulou, A., & Aksu-Koç, A. (2019). Questions asked by Turkish preschoolers from middle-SES and low- SES families. Cognitive Development, 52, 100802. https://doi.org/10.1016/j.cogdev.2019.100802

    Article  Google Scholar 

  • Van der Graaf, J., Segers, E., & Verhoeven, L. (2015). Scientific reasoning abilities in kindergarten: Dynamic assessment of the control of variables strategy. Instructional Science, 43(3), 381–400. https://doi.org/10.1007/s11251-015-9344-y

    Article  Google Scholar 

  • Van der Graaf, J., Segers, E., & Verhoeven, L. (2016). Scientific reasoning in kindergarten: Cognitive factors in experimentation and evidence evaluation. Learning and Individual Differences, 49, 190–200. https://doi.org/10.1016/j.lindif.2016.06.006

    Article  Google Scholar 

  • Van der Graaf, J., Segers, E., & Verhoeven, L. (2018). Individual differences in the development of scientific thinking in kindergarten. Learning and Instruction, 56, 1–9. https://doi.org/10.1016/j.learninstruc.2018.03.005

    Article  Google Scholar 

  • Veenman, M. V., Van Hout-Wolters, B. H., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition and Learning, 1(1), 3–14. https://doi.org/10.1007/s11409-006-6893-0

    Article  Google Scholar 

  • Yılmaz, M. M., Özen Uyar, R., & Aslan, D. (2020). Misrepresentation of science concepts in Turkish picture books. Issues in Educational Research, 30(3), 1183–1203.

    Google Scholar 

  • Wilkening, F., & Sodian, B. (2005). Scientific reasoning in young children: Introduction. Swiss Journal of Psychology, 64(3), 137–139. https://doi.org/10.1024/1421-0185.64.3.137

    Article  Google Scholar 

  • Willard, A. K., Busch, J. T., Cullum, K. A., Letourneau, S. M., Sobel, D. M., Callanan, M., & Legare, C. H. (2019). Explain this, explore that: A study of parent–child interaction in a children’s museum. Child Development, 90(5), e598–e617. https://doi.org/10.1111/cdev.13232

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgün Köksal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Köksal, Ö. (2022). Scientific Thinking in Young Children: Development, Culture, and Education. In: Şen, H.H., Selin (Retired), H. (eds) Childhood in Turkey: Educational, Sociological, and Psychological Perspectives. Science Across Cultures: The History of Non-Western Science, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-031-08208-5_16

Download citation

Publish with us

Policies and ethics