Skip to main content

Fundamentals of Triboelectric Nanogenerators

  • Living reference work entry
  • First Online:
Handbook of Triboelectric Nanogenerators

Abstract:

Triboelectric nanogenerator (TENG) was first invented by Zhong Lin Wang’s group in 2012 for converting small-scale mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. TENG is a paradigm shift technology and has unprecedented performances. TENG uses neither magnets nor coils; it is light in mass, low in density, low in cost, and can be fabricated using most of organic materials. Most importantly, in contrast to the classical electromagnetic generator, TENG works the best at low frequency (<5–10 Hz); thus, it is the unique choice for harvesting low-frequency energy from body motion and ocean waves (the blue energy). TENG can also be used as a self-powered sensor for actively detecting the static and dynamic processes arising from mechanical agitation using the voltage and current output signals, respectively, with applications such as mechanical sensors, physiological detection, motion sensing, touchpad, and electronic skin technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Bai Y, Xu L, Lin S et al (2020) Charge pumping strategy for rotation and sliding type triboelectric nanogenerators. Adv Energy Mater 10:2000605

    Article  CAS  Google Scholar 

  • Cheng L, Xu Q, Zheng Y et al (2018a) A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nat Commun 9:1–8

    Article  Google Scholar 

  • Cheng J, Ding W, Zi Y et al (2018b) Triboelectric microplasma powered by mechanical stimuli. Nat Commun 9:1–11

    Article  Google Scholar 

  • Cui N, Liu J, Lei Y et al (2018) High-performance triboelectric nanogenerator with a rationally designed friction layer structure. ACS Appl Energy Mater 1:2891–2897

    Article  CAS  Google Scholar 

  • Fan FR, Tian ZQ, Wang ZL (2012) Flexible triboelectric generator. Nano Energy 1:328–334

    Article  CAS  Google Scholar 

  • Furfari FA (2005) A history of the Van de Graaff generator. IEEE Ind Appl Mag 11:10–14

    Article  Google Scholar 

  • He T, Wen F, Wang H et al (2020) Self-powered wireless IoT sensor based on triboelectric textile. In: 2020 IEEE 33rd international conference on micro electro mechanical systems (MEMS). IEEE, pp 267–270

    Chapter  Google Scholar 

  • Jiang T, Pang H, An J et al (2020) Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv Energy Mater 10:2000064

    Article  CAS  Google Scholar 

  • Li S, Wang S, Zi Y et al (2015) Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states. ACS Nano 9:7479–7487

    Article  CAS  Google Scholar 

  • Li A, Zi Y, Guo H et al (2017) Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nat Nanotechnol 12:481–487

    Article  CAS  Google Scholar 

  • Li D, Xu C, Liao Y et al (2021) Interface inter-atomic electron-transition induced photon emission in contact-electrification. Sci Adv 7:eabj0349

    Article  CAS  Google Scholar 

  • Lin L, Xie YN, Niu SM, Wang SH, Yang P-K, Wang ZL (2015) Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of∼55%. ACS Nano 9:922–930

    Article  CAS  Google Scholar 

  • Lin Z, Zhang B, Guo H et al (2019) Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 64:103908

    Article  CAS  Google Scholar 

  • Lin SQ, Xu L, Wang AC et al (2020a) Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer. Nat Commun 11:1–8

    CAS  Google Scholar 

  • Lin Z, Zhang B, Zou H et al (2020b) Rationally designed rotation triboelectric nanogenerators with much extended lifetime and durability. Nano Energy 68:104378

    Article  CAS  Google Scholar 

  • Lin S, Chen X, Wang ZL et al (2022) Contact-electrification at liquid-solid interface. Chem Rev 122:5209–5232

    Article  CAS  Google Scholar 

  • Liu W, Wang Z, Wang G et al (2019) Integrated charge excitation triboelectric nanogenerator. Nat Commun 10:1–9

    Google Scholar 

  • Liu Y, Liu W, Wang Z et al (2020) Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat Commun 11:1–8

    CAS  Google Scholar 

  • Nie JH, Ren ZW, Xu L et al (2019) Probing contact-electrification-induced electron and ion transfers at a liquid–solid Interface. Adv Mater 32:1905696

    Article  Google Scholar 

  • Wang S, Xie Y, Niu S et al (2014) Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv Mater 26:2818–2824

    Google Scholar 

  • Wang ZL (2008) Self-powering nanotech. Sci Am 298:82–87

    Google Scholar 

  • Wang ZL (2011) Nanogenerators for self-powered devices and systems published by Georgia Institute of Technology (first book for free online down load)

    Google Scholar 

  • Wang ZL (2014) Triboelectric nanogenerators as new energy technology and self-powered sensors – principles, problems and perspectives. Faraday Discuss 176:447–458

    Article  CAS  Google Scholar 

  • Wang ZL (2017a) On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. Mater Today 20:74–82

    Article  Google Scholar 

  • Wang ZL (2017b) New wave power. Nature 542:159–160

    Article  Google Scholar 

  • Wang ZL (2020) On the first principle theory of nanaogenerators from Maxwell’s equations. Nano Energy 68:104272

    Article  CAS  Google Scholar 

  • Wang ZL (2021) From conctact electrication to triboelectric nanogenerators (Review). Rep Prog Phys 84:096502

    Article  CAS  Google Scholar 

  • Wang ZL (2022a) On the expanded Maxwell’s equations for moving charged media system – general theory, mathematical solutions and applications in TENG. Mater Today 52:348–363

    Article  Google Scholar 

  • Wang ZL (2022b) Maxwell’s equations for a mechano-driven, shape-deformable, charged media system, slowly moving at an arbitrary velocity field v(r,𝑡). J Phys Commun 6:085013

    Article  Google Scholar 

  • Wang ZL (2022c) The expanded Maxwell’s equations for a mechano-driven media system that moves with acceleration. Int J Mordern Phys 37:2350159

    Article  Google Scholar 

  • Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246

    Article  CAS  Google Scholar 

  • Wang ZL, Wang AC (2019) On the origin of contact-electrification. Mater Today 30:34–51

    Article  Google Scholar 

  • Wang ZL, Lin L, Chen J et al (2016) Triboelectric nanogenerators. Springer, Cham, pp 91–107

    Book  Google Scholar 

  • Wang ZL, Jiang T, Xu L (2017) Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39:9–23

    Article  Google Scholar 

  • Wu C, Liu R, Wang J et al (2017) A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy. Nano Energy 32:287–293

    Article  CAS  Google Scholar 

  • Wu J, Xi Y, Shi Y et al (2020) Toward wear-resistive, highly durable and high performance triboelectric nanogenerator through interface liquid lubrication. Nano Energy 72:104659

    Article  CAS  Google Scholar 

  • Xu C, Zi YL, Wang AC et al (2018a) On the electron-transfer mechanism in the contact-electrification effect. Adv Mater 30:1706790

    Article  Google Scholar 

  • Xu L, Bu TZ, Yang XD et al (2018b) Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy 49:625–633

    Article  CAS  Google Scholar 

  • Xu S, Fu X, Liu G et al (2021) Comparison of applied torque and energy conversion efficiency between rotational triboelectric nanogenerator and electromagnetic generator. iScience 24:102318

    Article  Google Scholar 

  • Yang X, Xu L, Lin P et al (2019a) Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy 60:404–412

    Article  CAS  Google Scholar 

  • Yang H, Pang Y, Bu T et al (2019b) Triboelectric micromotors actuated by ultralow frequency mechanical stimuli. Nat Commun 10:1–7

    Google Scholar 

  • Zhan F, Wang AC, Xu L et al (2020) Electron transfer as a liquid droplet contacting a polymer surface. ACS Nano 14:17565–17573

    Article  CAS  Google Scholar 

  • Zhang C, Tang W, Han C et al (2014) Theoretical comparison, equivalent transformation and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv Mater 26:3580–3591

    Article  CAS  Google Scholar 

  • Zhang L, Su C, Cheng L et al (2019) Enhancing the performance of textile triboelectric nanogenerators with oblique microrod arrays for wearable energy harvesting. ACS Appl Mater Interfaces 11:26824–26829

    Article  CAS  Google Scholar 

  • Zhang J, Lin S, Zheng M et al (2021) Triboelectric nanogenerator as a probe for measuring the charge transfer between liquid and solid surfaces. ACS Nano 15:14830–14837

    Article  CAS  Google Scholar 

  • Zhang JY, Lin SQ, Wang ZL (2023) Pixeled triboelectric nanogenerator array as a probe for in-situ dynamic mapping of Interface charge transfer at a liquid-solid contacting. ACS Nano 17:1646–1652

    Article  CAS  Google Scholar 

  • Zheng Y, Cheng L, Yuan M et al (2014) An electrospun nanowire-based triboelectric nanogenerator and its application in a fully self-powered UV detector. Nanoscale 6:7842–7846

    Article  CAS  Google Scholar 

  • Zhu G, Zhou YS, Bai P et al (2014) A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv Mater 26:3788–3796

    Article  CAS  Google Scholar 

  • Zi Y, Niu S, Wang J et al (2015) Standards and figure of merits for quantifying the performance of triboelectric nanogenerators. Nat Commun 6:1–8

    Article  Google Scholar 

  • Zi Y, Guo H, Wen Z et al (2016) Harvesting low-frequency (< 5 Hz) irregular mechanical energy: a possible killer-application of triboelectric nanogenerator. ACS Nano 10:4797–4805

    Article  CAS  Google Scholar 

  • Zou H, Zhang Y, Guo L et al (2019) Quantifying the triboelectric series. Nat Commun 10:1–9

    Article  Google Scholar 

  • Zou H, Guo L, Xue H et al (2020) Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nat Commun 11:1–7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, Z.L. (2023). Fundamentals of Triboelectric Nanogenerators. In: Wang, Z.L., Yang, Y., Zhai, J., Wang, J. (eds) Handbook of Triboelectric Nanogenerators. Springer, Cham. https://doi.org/10.1007/978-3-031-05722-9_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05722-9_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05722-9

  • Online ISBN: 978-3-031-05722-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics