Skip to main content

Cancer Biology of Molecular Imaging

  • Reference work entry
  • First Online:
Nuclear Oncology
  • 1126 Accesses

Abstract

Cancer is a complex series of stepwise genetic mutations and epigenetic modifications resulting in characteristic phenotypic changes in the transformed neoplastic cells (“cancer hallmarks”). Some of the altered genes become “oncogenes,” a gene whose presence induces a cascade of biologic events that promote malignant transformation of the cell, causing unchecked proliferation and spread (metastases) widely in the body with the potential to disrupt and even destroy the normal tissue phenotype; this leads to loss of essential normal functions and ultimately, if not effectively treated, death of the host. Locally, at both primary and metastatic sites, cancer cells recruit normal host tissues to create a favorable environment for their survival and replication. Fibrocytes and collagen-producing cells provide structure for the tumor cells to form a stroma, also called tumor microenvironment (TME). Cancer cells interact with this stroma through paracrine signals that alter the stromal phenotype to be maximally supportive of the tumor mass. Endothelial cells are recruited to form blood vessels prompting tumor blood flow, providing oxygen and nutrients for growth. Tumor blood vessels have incomplete endothelium, making the vessels leaky. This allows large molecules and immune cells to pass readily into the tumor interstitium, often fostering an environment within the mass that resists immunologic attack.

Hallmarks of cancer include rapid proliferation, a characteristic metabolism, immortality, resistance to apoptosis, resistance to suppression of proliferation, metastatic behavior, and resistance to immunologic attack. There is growing evidence that the individual cellular phenotype in cancers is continuously evolving based on epigenetic action (“lineage plasticity”), during which multiple genes may be co-opted from usually quiescent tissue development pathways. These changes sometimes promote intrinsic and extrinsic resistance to cancer treatments. The tumor mass may locally invade surrounding tissue, causing pain and organ dysfunction. Cells and groups of cells leave the primary mass as single cells or in clusters and metastasize to distant organs, often in an organ selective manner.

Molecular imaging (MI) and its therapeutic twin molecular targeted radiotherapy (MTR) are rapidly evolving into major determinants for diagnostic and treatment decisions in clinical oncology. Molecular imaging offers quantitative detection of the molecules and molecular-based events that are fundamental to the malignant state in vivo in living subjects. MTR exploits the unique biochemical specificity of cancer-related molecular targets to deliver focused radiation to cancer cells. In this chapter, we shall learn how the discovery of key biomolecules and biochemical processes central to cancer genesis and progression are being mirrored in successful development of practical diagnostic and therapeutic radiopharmaceuticals useful for clinical care.

These advances in available radiodrugs occur in the context of the ever-expanding capability of nuclear imaging methods, with improved resolution, sensitivity, and quantitative power that permits real-time functional imaging at the tumor and tissue level. Clinical PET and SPECT imaging is now “fusion” imaging, whereby an anatomic context comes directly from high-resolution cross-sectional imaging equipment, particularly CT and MRI; fusion images facilitate staging and treatment response monitoring for oncology. Additionally, high-speed computer-based analytic platforms convert radioactive counts into functional images representing key tumor-specific biochemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette, a transport system superfamily

ABL:

Abelson murine leukemia

AKT:

Protein kinase B

AML:

Acute myeloid leukemia

APC:

Antigen-presenting cell

AR:

Androgen receptor

ASCO:

American Society of Clinical Oncology

ATP:

Adenosine triphosphate

BRAF:

Gene encoding for the B-Raf protein, a serine/threonine-protein kinase; the gene is also known as the proto-oncogene B-Raf and v-Raf murine sarcoma viral oncogene homolog B

BRCA1:

Breast cancer type 1 susceptibility protein

BRCA2:

Breast cancer type 2 susceptibility protein

BRS:

BRAF-RAS score

BSI:

Bone scan index

CA9:

Carbonic anhydrase 9 (or carbonic anhydrase IX, CAIX)

c-Kit:

Gene encoding for tyrosine-protein kinase kit (or CD117), also known as Mast/stem cell growth factor receptor (SCFR)

CML:

Chronic myeloid leukemia

CR:

Complete response to therapy

CRPC:

Castrate-resistant prostate cancer

CT:

X-ray computed tomography

CTL:

Cytotoxic T cell

CTLA4:

Cytotoxic T-lymphocyte antigen 4, also known as CD152

CTLC:

Cutaneous T-cell lymphoma

DHT:

Dihydrotestosterone

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

DOTATATE:

DOTA-Tyr3-octreotate

EGFR:

Epidermal growth factor receptor; the mutated form EGFRvIII plays a prominent role in tumorigenesis and proangiogenic signaling

EORTC:

European Organisation for Research and Treatment of Cancer

EPR:

Extravasation and passive retention

ERK:

Extracellular signal-regulated kinase

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

18F-FACBC:

Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid

18F-FDHT:

16β-18F-Fluoro-5-dihydrotestosterone

18F-FGln:

18F-Fluoroglutamine

18F-FLT:

2-18F-Fluoro-l-thymidine

18F-MISO:

18F-Fluoromisonidazole

FAPI:

Fibroblast activation protein inhibitor

FDHT:

Flouro-di-hydrotestrone, an androgen targeting drug used when labeled with Flourine 18 for PET

68Ga-PSMA:

Glu-urea-Lys-(Ahx)-[68Ga(HBED-CC)]

GIST:

Gastrointestinal stromal tumor

2-HG:

2-Hydroxyglutarate

H&E:

Hematoxylin and eosin staining

HER2:

Human epidermal growth factor receptor 2, also known as receptor tyrosine-protein

HIF-1:

Hypoxia-inducible factor

HK2:

Hexokinase 2

hsvTK:

Herpes simplex virus-1 thymidine kinase

IDH1:

Isocitrate dehydrogenase 1, a cytoplasmic enzyme

IDH1:

Isocitrate dehydrogenase enzymes

IDH2:

Isocitrate dehydrogenase 2, a mitochondrial enzyme

IL2:

Interleukin 2

Markov chain:

A mathematical concept describing a transition from one state to another by probability-driven rules used to describe transitions of cell types from one maturation state to another along a development path toward a mature cellular end-state

MEK:

Mitogen-activated protein kinase

MI:

Molecular imaging

MRI:

Magnetic resonance imaging

MSKCC:

Memorial Sloan-Kettering Cancer Center

mTOR:

Mammalian target of rapamycin

MTV:

Metabolizing tumor volume

Myc:

Regulator gene that encodes for a transcription factor (also known as c-Myc)

NAALADase:

N-Acetylated-alpha-linked-acidic dipeptidase, also known as glutamate carboxypeptidase II

NADPH:

Nicotinamide adenine dinucleotide phosphate

NIH:

United States National Institutes of Health

NSCLC:

Non–small cell lung cancer

p53:

Tumor protein p53, also known as cellular tumor antigen p53, phosphoprotein p53, tumor suppressor p53, antigen NY-CO-13, or transformation-related protein 53 (TRP53)

PARP:

Poly adenosine diphosphate ribose polymerase

PARPi:

Poly adenosine diphosphate ribose polymerase inhibitor

PD-1:

Programmed cell death protein 1, also known as CD279

PERCIST:

Positron emission tomography response criteria in solid tumors

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/Computed tomography

PI13K:

Phosphoinositide 3-kinase

PI3K/AKT/mTOR:

Intracellular signaling pathway regulating the cell cycle

PR:

Partial response

PSMA:

Prostate-specific membrane antigen

PTEN:

Gene encoding for the phosphatase and tensin homolog protein, a tumor suppressor; PTEN deletions indicate a poor prognosis

RAI:

Radioactive iodine (most often 131I) used for therapy

RAIR:

RAI refractory (thyroid cancer)

Ras:

Oncogene regulating signaling cascades

RB:

Gene encoding for the retinoblastoma protein

RCHOP:

Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone

RECIST:

Response evaluation criteria in solid tumors

RNAseq:

Rapid RNA sequencing to detect gene sequences activated in a genome

RTK:

Receptor tyrosine kinase

SCLC:

Small-cell lung cancer

STEAP:

Family of transmembrane epithelial antigens of prostate comprising six members

SUL:

Lean body mass corrected standard uptake value

SULpeak:

Lean body mass corrected standard uptake value at voxels of maximum

SUV:

Standardized uptake value

SUVmax:

Standardized uptake value at point of maximum

SUVpeak:

Standardized uptake value at voxels of maximum, based on correction for lean body mass

TCR:

T-cell receptor

TDS:

Thyroid differentiation score

TIL:

Tumor-infiltrating lymphocyte

TLG:

Total lesion glycolysis

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

VHL:

Von Hippel-Lindau

References

  1. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz Jr LA, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58. https://doi.org/10.1126/science.1235122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. https://doi.org/10.1016/s0092-8674(00)81683-9.

    Article  CAS  PubMed  Google Scholar 

  3. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer. 1999;35:1773–82.

    Article  CAS  Google Scholar 

  4. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1(0161–5505 (Print)):122S–50S. https://doi.org/10.2967/jnumed.108.057307.

    Article  CAS  PubMed  Google Scholar 

  5. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6. https://doi.org/10.1056/NEJM197111182852108.

    Article  CAS  PubMed  Google Scholar 

  6. Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016;15(6):385–403. https://doi.org/10.1038/nrd.2015.17.

    Article  CAS  PubMed  Google Scholar 

  7. Gaykema SB, Brouwers AH, Lub-de Hooge MN, Pleijhuis RG, Timmer-Bosscha H, Pot L, et al. 89Zr-bevacizumab PET imaging in primary breast cancer. J Nucl Med. 2013;54(7):1014–8. https://doi.org/10.2967/jnumed.112.117218.

  8. Zhu Z, Miao W, Li Q, Dai H, Ma Q, Wang F, et al. 99mTc-3PRGD2 for integrin receptor imaging of lung cancer: a multicenter study. J Nucl Med. 2012;53(5):716–22. https://doi.org/10.2967/jnumed.111.098988.

    Article  PubMed  Google Scholar 

  9. Stacy MR, Maxfield MW, Sinusas AJ. Targeted molecular imaging of angiogenesis in PET and SPECT: a review. Yale J Biol Med. 2012;85(1):75–86.

    PubMed  PubMed Central  Google Scholar 

  10. Beer AJ, Grosu AL, Carlsen J, Kolk A, Sarbia M, Stangier I, et al. [18F]galacto-RGD positron emission tomography for imaging of alphavbeta3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res. 2007;13(22 Pt 1):6610–6. https://doi.org/10.1158/1078-0432.CCR-07-0528.

  11. Schliemann C, Neri D. Antibody-based targeting of the tumor vasculature. Biochim Biophys Acta. 2007;1776(2):175–92. https://doi.org/10.1016/j.bbcan.2007.08.002.

    Article  CAS  PubMed  Google Scholar 

  12. Rajendran JG, Wilson DC, Conrad EU, Peterson LM, Bruckner JD, Rasey JS, et al. [18F]FMISO and [18F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging. 2003;30(5):695–704. https://doi.org/10.1007/s00259-002-1096-7.

  13. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003;300(5622):1155–9. https://doi.org/10.1126/science.1082504.

    Article  CAS  PubMed  Google Scholar 

  14. Levchenko A, Mehta BM, Niu X, Kang G, Villafania L, Way D, et al. Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells. Proc Natl Acad Sci U S A. 2005;102(6):1933–8. https://doi.org/10.1073/pnas.0401851102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McArthur GA, Puzanov I, Amaravadi R, Ribas A, Chapman P, Kim KB, et al. Marked, homogeneous, and early [18F]fluorodeoxyglucose-positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. J Clin Oncol. 2012;30(14):1628–34. https://doi.org/10.1200/JCO.2011.39.1938.

  16. Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science. 2013;342(6165):1432–3. https://doi.org/10.1126/science.342.6165.1432.

    Article  CAS  PubMed  Google Scholar 

  17. Page DB, Postow MA, Callahan MK, Allison JP, Wolchok JD. Immune modulation in cancer with antibodies. Annu Rev Med. 2014;65(1545-326X (Electronic)):185–202. https://doi.org/10.1146/annurev-med-092012-112807.

    Article  CAS  PubMed  Google Scholar 

  18. Wolchok JD, Weber JS, Hamid O, Lebbe C, Maio M, Schadendorf D, et al. Ipilimumab efficacy and safety in patients with advanced melanoma: a retrospective analysis of HLA subtype from four trials. Cancer Immun. 2010;10(1424–9634 (Electronic)):9.

    PubMed  PubMed Central  Google Scholar 

  19. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5(1):28. https://doi.org/10.1038/s41392-020-0134-x.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci U S A. 2005;102(39):13909–14. https://doi.org/10.1073/pnas.0506517102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest. 2005;115(1):44–55. https://doi.org/10.1172/JCI22320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, et al. Genes that mediate breast cancer metastasis to the brain. Nature. 2009;459(7249):1005–9. https://doi.org/10.1038/nature08021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Comen E, Norton L, Massague J. Clinical implications of cancer self-seeding. Nat Rev Clin Oncol. 2011;8(6):369–77. https://doi.org/10.1038/nrclinonc.2011.64.

    Article  PubMed  Google Scholar 

  24. Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, et al. Tumor self-seeding by circulating cancer cells. Cell. 2009;139(7):1315–26. https://doi.org/10.1016/j.cell.2009.11.025.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14. https://doi.org/10.1126/science.123.3191.309.

    Article  CAS  PubMed  Google Scholar 

  26. Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9:425–34.

    Article  CAS  Google Scholar 

  27. Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18(1):54–61. https://doi.org/10.1016/j.gde.2008.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008;134(5):703–7. https://doi.org/10.1016/j.cell.2008.08.021.

    Article  CAS  PubMed  Google Scholar 

  29. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008;105(48):18782–7. https://doi.org/10.1073/pnas.0810199105.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Thompson CB. Metabolic enzymes as oncogenes or tumor suppressors. N Engl J Med. 2009;360:813–5.

    Article  CAS  Google Scholar 

  31. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–44. https://doi.org/10.1038/nature08617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology. 1993;189:847–50.

    Article  CAS  Google Scholar 

  33. Wibmer AG, Morris MJ, Gonen M, Zheng J, Hricak H, Larson SM, et al. Quantification of metastatic prostate cancer whole-body tumor burden with FDG pet parameters and associations with overall survival after first line Abiraterone or Enzalutamide: a single-center retrospective cohort study. J Nucl Med. 2021;62(8):1050–6. https://doi.org/10.2967/jnumed.120.256602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Setty M, Kiseliovas V, Levine J, Gayoso A, Mazutis L, Pe'er D. Characterization of cell fate probabilities in single-cell data with Palantir. Nat Biotechnol. 2019;37:451–60.

    Article  CAS  Google Scholar 

  35. Beltran H, Hruszkewycz A, Scher HI, Hildesheim J, Isaacs J, Yu EY, et al. The role of lineage plasticity in prostate cancer therapy resistance. Clin Cancer Res. 2019;25(23):6916–24. https://doi.org/10.1158/1078-0432.CCR-19-1423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Davies AH, Beltran H, Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol. 2018;15(5):271–86. https://doi.org/10.1038/nrurol.2018.22.

    Article  CAS  PubMed  Google Scholar 

  37. Quintanal-Villalonga Á, Chan JM, Yu HA, Pe'er D, Sawyers CL, Sen T, et al. Lineage plasticity in cancer: a shared pathway of therapeutic resistance. Nat Rev Clin Oncol. 2020;17:360–71.

    Article  Google Scholar 

  38. Beattie BJ, Smith-Jones PM, Jhanwar YS, Schöder H, Schmidtlein CR, Morris MJ, et al. Pharmacokinetic assessment of the uptake of 16beta-18F-fluoro-5alpha-dihydrotestosterone (FDHT) in prostate tumors as measured by PET. J Nucl Med. 2010;51:183–92.

    Article  CAS  Google Scholar 

  39. Scher HI, Beer TM, Higano CS, Anand A, Taplin ME, Efstathiou E, et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet. 2010;375(9724):1437–46. https://doi.org/10.1016/S0140-6736(10)60172-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fox JJ, Morris MJ, Larson SM, Schoder H, Scher HI. Developing imaging strategies for castration resistant prostate cancer. Acta Oncol. 2011;50 Suppl 1(1651–226X (Electronic)):39–48. https://doi.org/10.3109/0284186X.2011.572914.

    Article  PubMed  Google Scholar 

  41. Fox JJ, Autran-Blanc E, Morris MJ, Gavane S, Nehmeh S, Van Nuffel A, et al. Practical approach for comparative analysis of multilesion molecular imaging using a semiautomated program for PET/CT. J Nucl Med. 2011;52(11):1727–32. https://doi.org/10.2967/jnumed.111.089326.

    Article  PubMed  Google Scholar 

  42. Ulmert D, Evans MJ, Holland JP, Rice SL, Wongvipat J, Pettersson K, et al. Imaging androgen receptor signaling with a radiotracer targeting free prostate-specific antigen. Cancer Discov. 2012;2(4):320–7. https://doi.org/10.1158/2159-8290.CD-11-0316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Evans MJ, Smith-Jones PM, Wongvipat J, Navarro V, Kim S, Bander NH, et al. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc Natl Acad Sci U S A. 2011;108(23):9578–82. https://doi.org/10.1073/pnas.1106383108.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pandit-Taskar N, O’Donoghue JA, Ruan S, Lyashchenko SK, Carrasquillo JA, Heller G, et al. First-in-human imaging with 89Zr-Df-IAB2M anti-PSMA minibody in patients with metastatic prostate cancer: pharmacokinetics, biodistribution, dosimetry, and lesion uptake. J Nucl Med. 2016;57(12):1858–64. https://doi.org/10.2967/jnumed.116.176206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fox JJ, Gavane SC, Blanc-Autran E, Nehmeh S, Gönen M, Beattie B, et al. Positron emission tomography/computed tomography-based assessments of androgen receptor expression and glycolytic activity as a prognostic biomarker for metastatic castration-resistant prostate cancer. JAMA Oncol. 2018;4:217–24.

    Article  Google Scholar 

  46. Wise DR, Schneider JA, Armenia J, Febles VA, McLaughlin B, Brennan R, et al. Dickkopf-1 can lead to immune evasion in metastatic castration-resistant prostate cancer. JCO Precis Oncol. 2020;4:1167–79. https://doi.org/10.1200/Po.20.00097.

    Article  Google Scholar 

  47. Scott AM, Wiseman G, Welt S, Adjei A, Lee FT, Hopkins W, et al. A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin Cancer Res. 2003;9(5):1639–47.

    CAS  PubMed  Google Scholar 

  48. Welt S, Divgi CR, Scott AM, Garin-Chesa P, Finn RD, Graham M, et al. Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. J Clin Oncol. 1994;12(6):1193–203. https://doi.org/10.1200/JCO.1994.12.6.1193.

    Article  CAS  PubMed  Google Scholar 

  49. Giesel FL, Kratochwil C, Lindner T, Marschalek MM, Loktev A, Lehnert W, et al. 68Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers. J Nucl Med. 2019;60:386–92.

    Article  CAS  Google Scholar 

  50. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467(7315):596–9. https://doi.org/10.1038/nature09454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fagin J. Personal communication. In: Larson SM. Sloan Kettering Institute, New York.

    Google Scholar 

  52. Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368(7):623–32. https://doi.org/10.1056/NEJMoa1209288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fisher B, Packard BS, Read EJ, Carrasquillo JA, Carter CS, Topalian SL, et al. Tumor localization of adoptively transferred indium-111 labeled tumor infiltrating lymphocytes in patients with metastatic melanoma. J Clin Oncol. 1989;7(2):250–61. https://doi.org/10.1200/JCO.1989.7.2.250.

    Article  CAS  PubMed  Google Scholar 

  54. Koehne G, Doubrovin M, Doubrovina E, Zanzonico P, Gallardo HF, Ivanova A, et al. Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol. 2003;21(4):405–13. https://doi.org/10.1038/nbt805.

    Article  CAS  PubMed  Google Scholar 

  55. Carrasquillo JA, Bunn PA, Keenan AM, Reynolds JC, Schroff RW, Foon KA, et al. Radioimmunodetection of cutaneous T-cell lymphoma with 111In-labeled T101 monoclonal antibody. N Engl J Med. 1986;315:673–80.

    Article  CAS  Google Scholar 

  56. Tavare R, Escuin-Ordinas H, Mok S, McCracken MN, Zettlitz KA, Salazar FB, et al. An effective immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy. Cancer Res. 2016;76(1):73–82. https://doi.org/10.1158/0008-5472.CAN-15-1707.

    Article  CAS  PubMed  Google Scholar 

  57. Lucignani G, Larson SM. Doctor, what does my future hold? The prognostic value of FDG-PET in solid tumours. Eur J Nucl Med Mol Imaging. 2010;37:1032–8.

    Article  Google Scholar 

  58. Downey RJ, Akhurst T, Gonen M, Vincent A, Bains MS, Larson S, et al. Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection. J Clin Oncol. 2004;22(16):3255–60. https://doi.org/10.1200/JCO.2004.11.109.

    Article  PubMed  Google Scholar 

  59. Pandit N, Gonen M, Krug L, Larson SM. Prognostic value of [18F]FDG-PET imaging in small cell lung cancer. Eur J Nucl Med Mol Imaging. 2003;30(1):78–84. https://doi.org/10.1007/s00259-002-0937-8.

    Article  PubMed  Google Scholar 

  60. Cachin F, Prince HM, Hogg A, Ware RE, Hicks RJ. Powerful prognostic stratification by [18F]fluorodeoxyglucose positron emission tomography in patients with metastatic breast cancer treated with high-dose chemotherapy. J Clin Oncol. 2006;24(19):3026–31. https://doi.org/10.1200/JCO.2005.04.6326.

    Article  PubMed  Google Scholar 

  61. Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91(2):498–505. https://doi.org/10.1210/jc.2005-1534.

    Article  CAS  PubMed  Google Scholar 

  62. Pan L, Gu P, Huang G, Xue H, Wu S. Prognostic significance of SUV on PET/CT in patients with esophageal cancer: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2009;21(9):1008–15. https://doi.org/10.1097/MEG.0b013e328323d6fa.

    Article  PubMed  Google Scholar 

  63. Patronas NJ, Di Chiro G, Kufta C, Bairamian D, Kornblith PL, Simon R, et al. Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg. 1985;62:816–22.

    Article  CAS  Google Scholar 

  64. Schöder H, Noy A, Gönen M, Weng L, Green D, Erdi YE, et al. Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23:4643–51.

    Article  Google Scholar 

  65. Meirelles GS, Schoder H, Ravizzini GC, Gonen M, Fox JJ, Humm J, et al. Prognostic value of baseline [18F]fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res. 2010;16(24):6093–9. https://doi.org/10.1158/1078-0432.CCR-10-1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Larson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Larson, S.M. (2022). Cancer Biology of Molecular Imaging. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-031-05494-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05494-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05493-8

  • Online ISBN: 978-3-031-05494-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics